BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 28108659)

  • 1. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs.
    Shigematsu M; Honda S; Loher P; Telonis AG; Rigoutsos I; Kirino Y
    Nucleic Acids Res; 2017 May; 45(9):e70. PubMed ID: 28108659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective amplification and sequencing of cyclic phosphate-containing RNAs by the cP-RNA-seq method.
    Honda S; Morichika K; Kirino Y
    Nat Protoc; 2016 Mar; 11(3):476-89. PubMed ID: 26866791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LOTTE-seq (Long hairpin oligonucleotide based tRNA high-throughput sequencing): specific selection of tRNAs with 3'-CCA end for high-throughput sequencing.
    Erber L; Hoffmann A; Fallmann J; Betat H; Stadler PF; Mörl M
    RNA Biol; 2020 Jan; 17(1):23-32. PubMed ID: 31486704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploration of CCA-added RNAs revealed the expression of mitochondrial non-coding RNAs regulated by CCA-adding enzyme.
    Pawar K; Shigematsu M; Loher P; Honda S; Rigoutsos I; Kirino Y
    RNA Biol; 2019 Dec; 16(12):1817-1825. PubMed ID: 31512554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Four-leaf clover qRT-PCR: A convenient method for selective quantification of mature tRNA.
    Honda S; Shigematsu M; Morichika K; Telonis AG; Kirino Y
    RNA Biol; 2015; 12(5):501-8. PubMed ID: 25833336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining tRNA sequencing methods to characterize plant tRNA expression and post-transcriptional modification.
    Warren JM; Salinas-Giegé T; Hummel G; Coots NL; Svendsen JM; Brown KC; Drouard L; Sloan DB
    RNA Biol; 2021 Jan; 18(1):64-78. PubMed ID: 32715941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide resolution profiling of m
    Lin S; Liu Q; Jiang YZ; Gregory RI
    Nat Protoc; 2019 Nov; 14(11):3220-3242. PubMed ID: 31619810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MINTmap: fast and exhaustive profiling of nuclear and mitochondrial tRNA fragments from short RNA-seq data.
    Loher P; Telonis AG; Rigoutsos I
    Sci Rep; 2017 Feb; 7():41184. PubMed ID: 28220888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive profiling of the expressions of tRNAs and tRNA-derived fragments (tRFs) reveals the complexities of tRNA and tRF populations in plants.
    Ma X; Liu C; Kong X; Liu J; Zhang S; Liang S; Luan W; Cao X
    Sci China Life Sci; 2021 Apr; 64(4):495-511. PubMed ID: 33569675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverse cell stresses induce unique patterns of tRNA up- and down-regulation: tRNA-seq for quantifying changes in tRNA copy number.
    Pang YL; Abo R; Levine SS; Dedon PC
    Nucleic Acids Res; 2014 Dec; 42(22):e170. PubMed ID: 25348403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments.
    Cozen AE; Quartley E; Holmes AD; Hrabeta-Robinson E; Phizicky EM; Lowe TM
    Nat Methods; 2015 Sep; 12(9):879-84. PubMed ID: 26237225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Next-Generation Sequencing-Based RiboMethSeq  Protocol for Analysis of tRNA 2'-O-Methylation.
    Marchand V; Pichot F; Thüring K; Ayadi L; Freund I; Dalpke A; Helm M; Motorin Y
    Biomolecules; 2017 Feb; 7(1):. PubMed ID: 28208788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbiome characterization by high-throughput transfer RNA sequencing and modification analysis.
    Schwartz MH; Wang H; Pan JN; Clark WC; Cui S; Eckwahl MJ; Pan DW; Parisien M; Owens SM; Cheng BL; Martinez K; Xu J; Chang EB; Pan T; Eren AM
    Nat Commun; 2018 Dec; 9(1):5353. PubMed ID: 30559359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. tRNAstudio: facilitating the study of human mature tRNAs from deep sequencing datasets.
    Murillo-Recio M; Martínez de Lejarza Samper IM; Tuñí I Domínguez C; Ribas de Pouplana L; Torres AG
    Bioinformatics; 2022 May; 38(10):2934-2936. PubMed ID: 35561195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. tRNA base methylation identification and quantification via high-throughput sequencing.
    Clark WC; Evans ME; Dominissini D; Zheng G; Pan T
    RNA; 2016 Nov; 22(11):1771-1784. PubMed ID: 27613580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer RNA detection by small RNA deep sequencing and disease association with myelodysplastic syndromes.
    Guo Y; Bosompem A; Mohan S; Erdogan B; Ye F; Vickers KC; Sheng Q; Zhao S; Li CI; Su PF; Jagasia M; Strickland SA; Griffiths EA; Kim AS
    BMC Genomics; 2015 Sep; 16():727. PubMed ID: 26400237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ALL-tRNAseq enables robust tRNA profiling in tissue samples.
    Scheepbouwer C; Aparicio-Puerta E; Gomez-Martin C; Verschueren H; van Eijndhoven M; Wedekind LE; Giannoukakos S; Hijmering N; Gasparotto L; van der Galien HT; van Rijn RS; Aronica E; Kibbelaar R; Heine VM; Wesseling P; Noske DP; Vandertop WP; de Jong D; Pegtel DM; Hackenberg M; Wurdinger T; Gerber A; Koppers-Lalic D
    Genes Dev; 2023 Mar; 37(5-6):243-257. PubMed ID: 36810209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of high-throughput sequencing methods for plant microRNA research.
    Ma X; Tang Z; Qin J; Meng Y
    RNA Biol; 2015; 12(7):709-19. PubMed ID: 26016494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Next-generation sequencing applied to flower development: RNA-seq.
    He J; Jiao Y
    Methods Mol Biol; 2014; 1110():401-11. PubMed ID: 24395272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the 'escapers' among RNA species.
    Ferro I; Ignatova Z
    Biochem Soc Trans; 2015 Dec; 43(6):1215-20. PubMed ID: 26614663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.