BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 28108734)

  • 1. Valproic acid inhibits glioblastoma multiforme cell growth via paraoxonase 2 expression.
    Tseng JH; Chen CY; Chen PC; Hsiao SH; Fan CC; Liang YC; Chen CP
    Oncotarget; 2017 Feb; 8(9):14666-14679. PubMed ID: 28108734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valproic acid induces p21 and topoisomerase-II (alpha/beta) expression and synergistically enhances etoposide cytotoxicity in human glioblastoma cell lines.
    Das CM; Aguilera D; Vasquez H; Prasad P; Zhang M; Wolff JE; Gopalakrishnan V
    J Neurooncol; 2007 Nov; 85(2):159-70. PubMed ID: 17534580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation.
    Pastori C; Kapranov P; Penas C; Peschansky V; Volmar CH; Sarkaria JN; Bregy A; Komotar R; St Laurent G; Ayad NG; Wahlestedt C
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8326-31. PubMed ID: 26111795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of valproic acid in combination with irradiation and temozolomide on primary human glioblastoma cells.
    Hosein AN; Lim YC; Day B; Stringer B; Rose S; Head R; Cosgrove L; Sminia P; Fay M; Martin JH
    J Neurooncol; 2015 Apr; 122(2):263-71. PubMed ID: 25648357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospho-valproic acid (MDC-1112) suppresses glioblastoma growth in preclinical models through the inhibition of STAT3 phosphorylation.
    Luo D; Fraga-Lauhirat M; Millings J; Ho C; Villarreal EM; Fletchinger TC; Bonfiglio JV; Mata L; Nemesure MD; Bartels LE; Wang R; Rigas B; Mackenzie GG
    Carcinogenesis; 2019 Dec; 40(12):1480-1491. PubMed ID: 30994173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The synergistic effects of valproic acid and fluvastatin on apoptosis induction in glioblastoma multiforme cell lines.
    Chang YL; Huang LC; Chen YC; Wang YW; Hueng DY; Huang SM
    Int J Biochem Cell Biol; 2017 Nov; 92():155-163. PubMed ID: 29017950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dissection of the valproic acid effects on glioma cells.
    Hoja S; Schulze M; Rehli M; Proescholdt M; Herold-Mende C; Hau P; Riemenschneider MJ
    Oncotarget; 2016 Sep; 7(39):62989-63002. PubMed ID: 27556305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic modifiers as anticancer drugs: effectiveness of valproic acid in neural crest-derived tumor cells.
    Papi A; Ferreri AM; Rocchi P; Guerra F; Orlandi M
    Anticancer Res; 2010 Feb; 30(2):535-40. PubMed ID: 20332466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-SEMA3A Antibody: A Novel Therapeutic Agent to Suppress Glioblastoma Tumor Growth.
    Lee J; Shin YJ; Lee K; Cho HJ; Sa JK; Lee SY; Kim SH; Lee J; Yoon Y; Nam DH
    Cancer Res Treat; 2018 Jul; 50(3):1009-1022. PubMed ID: 29129044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells.
    Tang NY; Chueh FS; Yu CC; Liao CL; Lin JJ; Hsia TC; Wu KC; Liu HC; Lu KW; Chung JG
    Oncol Rep; 2016 Apr; 35(4):2089-96. PubMed ID: 26781422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic targeting of glioma stem cells: Short-term and long-term treatments with valproic acid modulate DNA methylation and differentiation behavior, but not temozolomide sensitivity.
    Riva G; Butta V; Cilibrasi C; Baronchelli S; Redaelli S; Dalprà L; Lavitrano M; Bentivegna A
    Oncol Rep; 2016 May; 35(5):2811-24. PubMed ID: 26986767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple Molecular pathways explain the anti-proliferative effect of valproic acid on prostate cancer cells in vitro and in vivo.
    Shabbeer S; Kortenhorst MS; Kachhap S; Galloway N; Rodriguez R; Carducci MA
    Prostate; 2007 Jul; 67(10):1099-110. PubMed ID: 17477369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ACT001 modulates the NF-κB/MnSOD/ROS axis by targeting IKKβ to inhibit glioblastoma cell growth.
    Li Q; Sun Y; Liu B; Li J; Hao X; Ge W; Zhang X; Bao S; Gong J; Jiang Z; Qiu C; Zhao L; Zhao Y; Chen Y; Yang X; Ding Y; Wu Z
    J Mol Med (Berl); 2020 Feb; 98(2):263-277. PubMed ID: 31901951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delta 9-tetrahydrocannabinol inhibits cell cycle progression by downregulation of E2F1 in human glioblastoma multiforme cells.
    Galanti G; Fisher T; Kventsel I; Shoham J; Gallily R; Mechoulam R; Lavie G; Amariglio N; Rechavi G; Toren A
    Acta Oncol; 2008; 47(6):1062-70. PubMed ID: 17934890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antitumour effect of valproic acid against salivary gland cancer in vitro and in vivo.
    Nagai H; Fujioka-Kobayashi M; Ohe G; Hara K; Takamaru N; Uchida D; Tamatani T; Fujisawa K; Miyamoto Y
    Oncol Rep; 2014 Mar; 31(3):1453-8. PubMed ID: 24398788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma.
    Ahmad F; Dixit D; Sharma V; Kumar A; Joshi SD; Sarkar C; Sen E
    Cell Death Dis; 2016 May; 7(5):e2213. PubMed ID: 27148686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long non-coding RNA CASP5 promotes the malignant phenotypes of human glioblastoma multiforme.
    Zhou Y; Dai W; Wang H; Pan H; Wang Q
    Biochem Biophys Res Commun; 2018 Jun; 500(4):966-972. PubMed ID: 29715460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Musashi1 enhances chemotherapy resistance of pediatric glioblastoma cells in vitro.
    Pötschke R; Gielen G; Pietsch T; Kramm C; Klusmann JH; Hüttelmaier S; Kühnöl CD
    Pediatr Res; 2020 Mar; 87(4):669-676. PubMed ID: 31756732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valproic acid (VPA) inhibits the epithelial-mesenchymal transition in prostate carcinoma via the dual suppression of SMAD4.
    Lan X; Lu G; Yuan C; Mao S; Jiang W; Chen Y; Jin X; Xia Q
    J Cancer Res Clin Oncol; 2016 Jan; 142(1):177-85. PubMed ID: 26206483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paraoxonase 2 decreases renal reactive oxygen species production, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of NADPH oxidase.
    Yang Y; Zhang Y; Cuevas S; Villar VA; Escano C; D Asico L; Yu P; Grandy DK; Felder RA; Armando I; Jose PA
    Free Radic Biol Med; 2012 Aug; 53(3):437-46. PubMed ID: 22634053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.