BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 28108762)

  • 1. Enhancement of succinate yield by manipulating NADH/NAD
    Li J; Li Y; Cui Z; Liang Q; Qi Q
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3153-3161. PubMed ID: 28108762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-Based Ratio Regulation of Glucose and Xylose Improved Succinate Production.
    Zhang F; Li J; Liu H; Liang Q; Qi Q
    PLoS One; 2016; 11(6):e0157775. PubMed ID: 27315279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum.
    Skorokhodova AY; Morzhakova AA; Gulevich AY; Debabov VG
    J Biotechnol; 2015 Nov; 214():33-42. PubMed ID: 26362413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase.
    Balzer GJ; Thakker C; Bennett GN; San KY
    Metab Eng; 2013 Nov; 20():1-8. PubMed ID: 23876411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CreC Regulator of Escherichia coli, a New Target for Metabolic Manipulations.
    Godoy MS; Nikel PI; Cabrera Gomez JG; Pettinari MJ
    Appl Environ Microbiol; 2016 Jan; 82(1):244-54. PubMed ID: 26497466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli.
    Zhu X; Tan Z; Xu H; Chen J; Tang J; Zhang X
    Metab Eng; 2014 Jul; 24():87-96. PubMed ID: 24831708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli.
    Li Y; Li M; Zhang X; Yang P; Liang Q; Qi Q
    Bioresour Technol; 2013 Dec; 149():333-40. PubMed ID: 24125798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of an energy-conserving glycerol utilization pathways for improving anaerobic succinate production in Escherichia coli.
    Yu Y; Zhu X; Xu H; Zhang X
    Metab Eng; 2019 Dec; 56():181-189. PubMed ID: 31600571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli.
    Zhang X; Shanmugam KT; Ingram LO
    Appl Environ Microbiol; 2010 Apr; 76(8):2397-401. PubMed ID: 20154114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Escherichia coli for L-malate production anaerobically.
    Jiang Y; Zheng T; Ye X; Xin F; Zhang W; Dong W; Ma J; Jiang M
    Microb Cell Fact; 2020 Aug; 19(1):165. PubMed ID: 32811486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the recombinant succinic semi-aldehyde dehydrogenase from Saccharomyces cerevisiae.
    Cao J; Singh NK; Locy RD
    Yeast; 2014 Oct; 31(10):411-20. PubMed ID: 25092794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value.
    Yan D; Wang C; Zhou J; Liu Y; Yang M; Xing J
    Bioresour Technol; 2014 Mar; 156():232-9. PubMed ID: 24508660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic Engineering of Escherichia coli for High Yield Production of Succinic Acid Driven by Methanol.
    Zhang W; Zhang T; Song M; Dai Z; Zhang S; Xin F; Dong W; Ma J; Jiang M
    ACS Synth Biol; 2018 Dec; 7(12):2803-2811. PubMed ID: 30300546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of an energy-conserving strategy on succinate production under weak acidic and anaerobic conditions in Enterobacter aerogenes.
    Tajima Y; Yamamoto Y; Fukui K; Nishio Y; Hashiguchi K; Usuda Y; Sode K
    Microb Cell Fact; 2015 Jun; 14():80. PubMed ID: 26063229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of overexpression of nicotinic acid phosphoribosyl transferase on succinic acid production in Escherichia coli NZN111].
    Liu R; Ma J; Liang L; Xu B; Wang G; Zhang M; Jiang M
    Sheng Wu Gong Cheng Xue Bao; 2011 Oct; 27(10):1438-47. PubMed ID: 22260060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted optimization of central carbon metabolism for engineering succinate production in Escherichia coli.
    Zhao Y; Wang CS; Li FF; Liu ZN; Zhao GR
    BMC Biotechnol; 2016 Jun; 16(1):52. PubMed ID: 27342774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of NAD(H) pool and NADH/NAD(+) ratio by overexpression of nicotinic acid phosphoribosyltransferase for succinic acid production in Escherichia coli NZN111.
    Liang L; Liu R; Wang G; Gou D; Ma J; Chen K; Jiang M; Wei P; Ouyang P
    Enzyme Microb Technol; 2012 Oct; 51(5):286-93. PubMed ID: 22975127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C.
    Jantama K; Zhang X; Moore JC; Shanmugam KT; Svoronos SA; Ingram LO
    Biotechnol Bioeng; 2008 Dec; 101(5):881-93. PubMed ID: 18781696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.