These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 28108817)

  • 21. An automatic computer-aided detection scheme for pneumoconiosis on digital chest radiographs.
    Yu P; Xu H; Zhu Y; Yang C; Sun X; Zhao J
    J Digit Imaging; 2011 Jun; 24(3):382-93. PubMed ID: 20174852
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative computer-aided analysis of lung texture in chest radiographs.
    Katsuragawa S; Doi K; MacMahon H; Nakamori N; Sasaki Y; Fennessy JJ
    Radiographics; 1990 Mar; 10(2):257-69. PubMed ID: 2326513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks.
    Nakamura K; Yoshida H; Engelmann R; MacMahon H; Katsuragawa S; Ishida T; Ashizawa K; Doi K
    Radiology; 2000 Mar; 214(3):823-30. PubMed ID: 10715052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of digital with film radiographs for the classification of pneumoconiotic pleural abnormalities.
    Larson TC; Holiday DB; Antao VC; Thomas J; Pinheiro G; Kapil V; Franzblau A
    Acad Radiol; 2012 Feb; 19(2):131-40. PubMed ID: 22098943
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep convolutional network-based chest radiographs screening model for pneumoconiosis.
    Li X; Xu M; Yan Z; Xia F; Li S; Zhang Y; Xing Z; Guan L
    Front Med (Lausanne); 2024; 11():1290729. PubMed ID: 38348336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Application of a light-weighted convolutional neural network for automatic recognition of coal workers' pneumoconiosis in the early stage].
    Cui FT; Wang Y; Ding XP; Yao YL; Li B; Shen FH
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2023 Mar; 41(3):177-182. PubMed ID: 37006142
    [No Abstract]   [Full Text] [Related]  

  • 27. AMFP-net: Adaptive multi-scale feature pyramid network for diagnosis of pneumoconiosis from chest X-ray images.
    Alam MS; Wang D; Sowmya A
    Artif Intell Med; 2024 Aug; 154():102917. PubMed ID: 38917599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Classification of normal and abnormal lungs with interstitial diseases by rule-based method and artificial neural networks.
    Katsuragawa S; Doi K; MacMahon H; Monnier-Cholley L; Ishida T; Kobayashi T
    J Digit Imaging; 1997 Aug; 10(3):108-14. PubMed ID: 9268905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of an artificial neural network on radiologists' performance in the differential diagnosis of interstitial lung disease using chest radiographs.
    Ashizawa K; MacMahon H; Ishida T; Nakamura K; Vyborny CJ; Katsuragawa S; Doi K
    AJR Am J Roentgenol; 1999 May; 172(5):1311-5. PubMed ID: 10227508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated computer screening of chest radiographs for pneumoconiosis.
    Turner AF; Kruger RP; Thompson WB
    Invest Radiol; 1976; 11(4):258-66. PubMed ID: 783075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Window settings in the application of pneumoconiosis digital radiography].
    Zhao JJ; Jiang ZQ; Zhang M; Xiao Y; Chen JQ
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2017 Jul; 35(7):505-507. PubMed ID: 29081099
    [No Abstract]   [Full Text] [Related]  

  • 32. Training and Validating a Deep Convolutional Neural Network for Computer-Aided Detection and Classification of Abnormalities on Frontal Chest Radiographs.
    Cicero M; Bilbily A; Colak E; Dowdell T; Gray B; Perampaladas K; Barfett J
    Invest Radiol; 2017 May; 52(5):281-287. PubMed ID: 27922974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Comparison of digital selenium radiography with an analog screen-film system in the diagnostic process of pneumoconiosis according to ILO classification].
    Zähringer M; Piekarski C; Saupe M; Braun W; Winnekendonk G; Gossmann A; Krüger K; Krug B
    Rofo; 2001 Oct; 173(10):942-8. PubMed ID: 11588684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computer-aided diagnosis of breast cancer: artificial neural network approach for optimized merging of mammographic features.
    Lo JY; Baker JA; Kornguth PJ; Floyd CE
    Acad Radiol; 1995 Oct; 2(10):841-50. PubMed ID: 9419649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DLA-Net: dual lesion attention network for classification of pneumoconiosis using chest X-ray images.
    Alam MS; Wang D; Sowmya A
    Sci Rep; 2024 May; 14(1):11616. PubMed ID: 38773153
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An artificial neural network for predicting the incidence of radiation pneumonitis.
    Su M; Miften M; Whiddon C; Sun X; Light K; Marks L
    Med Phys; 2005 Feb; 32(2):318-25. PubMed ID: 15789575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computerized detection of diffuse lung disease in MDCT: the usefulness of statistical texture features.
    Wang J; Li F; Doi K; Li Q
    Phys Med Biol; 2009 Nov; 54(22):6881-99. PubMed ID: 19864701
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel computer-aided lung nodule detection system for CT images.
    Tan M; Deklerck R; Jansen B; Bister M; Cornelis J
    Med Phys; 2011 Oct; 38(10):5630-45. PubMed ID: 21992380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network.
    Suzuki K; Li F; Sone S; Doi K
    IEEE Trans Med Imaging; 2005 Sep; 24(9):1138-50. PubMed ID: 16156352
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Image feature analysis and computer-aided diagnosis in digital radiography: classification of normal and abnormal lungs with interstitial disease in chest images.
    Katsuragawa S; Doi K; MacMahon H
    Med Phys; 1989; 16(1):38-44. PubMed ID: 2646516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.