These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 28108840)

  • 21. Transcriptomic characterization of gall tissue of Japanese elm tree (Ulmus davidiana var. japonica) induced by the aphid Tetraneura nigriabdominalis.
    Takei M; Ito S; Tanaka K; Ishige T; Suzuki Y
    Biosci Biotechnol Biochem; 2017 Jun; 81(6):1069-1077. PubMed ID: 28164745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leaf-derived cecidomyiid galls are sinks in Machilus thunbergii (Lauraceae) leaves.
    Huang MY; Huang WD; Chou HM; Lin KH; Chen CC; Chen PJ; Chang YT; Yang CM
    Physiol Plant; 2014 Nov; 152(3):475-85. PubMed ID: 24621096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insect galls of Restinga de Marambaia (Barra de Guaratiba, Rio de Janeiro, RJ).
    Maia VC; Silva LO
    Braz J Biol; 2016 Apr; 76(3):787-95. PubMed ID: 27097094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Manipulation of food resources by a gall-forming aphid: the physiology of sink-source interactions.
    Larson KC; Whitham TG
    Oecologia; 1991 Sep; 88(1):15-21. PubMed ID: 28312726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new perspective on plant defense against foliar gall-forming aphids through activation of the fruit abscission pathway.
    Hua J; Liu J; Zhou W; Ma C; Luo S
    Plant Physiol Biochem; 2023 Mar; 196():1046-1054. PubMed ID: 36907012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synchronism between Aspidosperma macrocarpon (Apocynaceae) resources allocation and the establishment of the gall inducer Pseudophacopteron sp. (Hemiptera: Psylloidea).
    Castro AC; Oliveira DC; Moreira AS; lsaias RM
    Rev Biol Trop; 2013 Dec; 61(4):1891-900. PubMed ID: 24432541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developmental pathway from leaves to galls induced by a sap-feeding insect on Schinus polygamus (Cav.) Cabrera (Anacardiaceae).
    Dias GG; Ferreira BG; Moreira GR; Isaias RM
    An Acad Bras Cienc; 2013 Mar; 85(1):187-200. PubMed ID: 23538957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Water-repellent plant surface structure induced by gall-forming insects for waste management.
    Uematsu K; Kutsukake M; Fukatsu T
    Biol Lett; 2018 Oct; 14(10):. PubMed ID: 30333261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of leaflet age in anatomy and possible adaptive values of the midrib gall of Copaifera langsdorffii (Fabaceae: Caesalpinioideae).
    de Oliveira DC; Isaias RM
    Rev Biol Trop; 2009; 57(1-2):293-302. PubMed ID: 19637708
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp.
    Hearn J; Blaxter M; Schönrogge K; Nieves-Aldrey JL; Pujade-Villar J; Huguet E; Drezen JM; Shorthouse JD; Stone GN
    PLoS Genet; 2019 Nov; 15(11):e1008398. PubMed ID: 31682601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A genetic basis for the manipulation of sink-source relationships by the galling aphid Pemphigus batae.
    Compson ZG; Larson KC; Zinkgraf MS; Whitham TG
    Oecologia; 2011 Nov; 167(3):711-21. PubMed ID: 21667296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) stimulates different chemical and phytohormone responses in two Eucalyptus varieties that vary in susceptibility to galling.
    Li XQ; Liu YZ; Guo WF; Solanki MK; Yang ZD; Xiang Y; Ma ZC; Wen YG
    Tree Physiol; 2017 Sep; 37(9):1208-1217. PubMed ID: 28938058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phenotypic plasticity and similarity among gall morphotypes on a superhost, Baccharis reticularia (Asteraceae).
    Formiga AT; Silveira FA; Fernandes GW; Isaias RM
    Plant Biol (Stuttg); 2015 Mar; 17(2):512-21. PubMed ID: 25124804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hormaphis hamamelidis fundatrices benefit by manipulating phenolic metabolism of their host.
    Rehill BJ; Schultz JC
    J Chem Ecol; 2012 May; 38(5):496-8. PubMed ID: 22532245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gall volatiles defend aphids against a browsing mammal.
    Rostás M; Maag D; Ikegami M; Inbar M
    BMC Evol Biol; 2013 Sep; 13():193. PubMed ID: 24020365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Poplar Tree Response to Feeding by the Petiole Gall Aphid
    Kot I; Kmieć K
    Insects; 2020 May; 11(5):. PubMed ID: 32380670
    [No Abstract]   [Full Text] [Related]  

  • 37. Molecular mechanisms of tannin accumulation in Rhus galls and genes involved in plant-insect interactions.
    Chen H; Liu J; Cui K; Lu Q; Wang C; Wu H; Yang Z; Ding W; Shao S; Wang H; Ling X; King-Jones K; Chen X
    Sci Rep; 2018 Jun; 8(1):9841. PubMed ID: 29959354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diversity of gall-inducing insects in the high altitude wetland forests in Pernambuco, Northeastern Brazil.
    Santos JC; Almeida-Cortez JS; Fernandes GW
    Braz J Biol; 2011 Feb; 71(1):47-56. PubMed ID: 21437398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development.
    Takeda S; Yoza M; Amano T; Ohshima I; Hirano T; Sato MH; Sakamoto T; Kimura S
    PLoS One; 2019; 14(10):e0223686. PubMed ID: 31647845
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tetraneura ulmi (Hemiptera: Eriosomatinae) Induces Oxidative Stress and Alters Antioxidant Enzyme Activities in Elm Leaves.
    Kmiec K; Rubinowska K; Golan K
    Environ Entomol; 2018 Aug; 47(4):840-847. PubMed ID: 29672728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.