These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 28109049)
1. Production of the antibiotic secondary metabolite solanapyrone A by the fungal plant pathogen Ascochyta rabiei during fruiting body formation in saprobic growth. Kim W; Park JJ; Dugan FM; Peever TL; Gang DR; Vandemark G; Chen W Environ Microbiol; 2017 May; 19(5):1822-1835. PubMed ID: 28109049 [TBL] [Abstract][Full Text] [Related]
2. Functional Analyses of the Diels-Alderase Gene sol5 of Ascochyta rabiei and Alternaria solani Indicate that the Solanapyrone Phytotoxins Are Not Required for Pathogenicity. Kim W; Park CM; Park JJ; Akamatsu HO; Peever TL; Xian M; Gang DR; Vandemark G; Chen W Mol Plant Microbe Interact; 2015 Apr; 28(4):482-96. PubMed ID: 25372118 [TBL] [Abstract][Full Text] [Related]
3. Ascochyta blight of chickpea: production of phytotoxins and disease management. Shahid AA; Husnain T; Riazuddin S Biotechnol Adv; 2008; 26(6):511-5. PubMed ID: 18616995 [TBL] [Abstract][Full Text] [Related]
5. Reduction in solanapyrone phytotoxin production by Ascochyta rabiei transformed with Agrobacterium tumefaciens. Mogensen EG; Challen MP; Strange RN FEMS Microbiol Lett; 2006 Feb; 255(2):255-61. PubMed ID: 16448503 [TBL] [Abstract][Full Text] [Related]
6. The effect of essential oil of Ammoides pusilla (brot.) breistr on the growth and the production of solanapyrone a by Ascochyta rabiei. Zerroug MM; Laouer H; Strange RN; Nicklin J Commun Agric Appl Biol Sci; 2010; 75(4):721-4. PubMed ID: 21534482 [TBL] [Abstract][Full Text] [Related]
7. Functional Analyses of the Diels-Alderase Gene sol5 of Ascochyta rabiei and Alternaria solani Indicate that the Solanapyrone Phytotoxins Are Not Required for Pathogenicity. Kim W; Park CM; Park JJ; Akamatsu HO; Peever TL; Xian M; Gang DR; Vandemark G; Chen W Mol Plant Microbe Interact; 2015 Jan; 2015(1):1-15. PubMed ID: 27839072 [TBL] [Abstract][Full Text] [Related]
8. A Novel Type Pathway-Specific Regulator and Dynamic Genome Environments of a Solanapyrone Biosynthesis Gene Cluster in the Fungus Ascochyta rabiei. Kim W; Park JJ; Gang DR; Peever TL; Chen W Eukaryot Cell; 2015 Nov; 14(11):1102-13. PubMed ID: 26342019 [TBL] [Abstract][Full Text] [Related]
9. The effect of solanapyrone a produced by Ascochyta rabiei on seed germination and the elongation of radicles and hypocotyls of chickpea (Cicer areitinum L.). Zerroug MM; Bouznad Z; Larous L; Strange RN Commun Agric Appl Biol Sci; 2004; 69(4):625-30. PubMed ID: 15756849 [TBL] [Abstract][Full Text] [Related]
11. Development of a sequence-characterized amplified region marker for detection of Ascochyta rabiei causing Ascochyta blight in chickpea. Baite MS; Upadhyay BK; Dubey SC Folia Microbiol (Praha); 2020 Feb; 65(1):103-108. PubMed ID: 31049801 [TBL] [Abstract][Full Text] [Related]
12. Ascochyta blight: isolation, characterization, and development of a rapid method to detect inhibitors of the chickpea fungal pathogen Ascochyta rabiei. Bahr L; Castelli MV; Barolo MI; Ruiz Mostacero N; Tosello ME; López SN Fungal Biol; 2016 Mar; 120(3):424-32. PubMed ID: 26895871 [TBL] [Abstract][Full Text] [Related]
13. Accumulation and Biosynthesis of Solanapyrone Phytotoxins by Ascochyta rabiei. Benning G; Barz W Z Naturforsch C J Biosci; 1995 Apr; 50(3-4):181-185. PubMed ID: 37978780 [TBL] [Abstract][Full Text] [Related]
14. Identification of a Polyketide Synthase Gene Responsible for Ascochitine Biosynthesis in Kim W; Lichtenzveig J; Syme RA; Williams AH; Peever TL; Chen W mSphere; 2019 Sep; 4(5):. PubMed ID: 31554725 [TBL] [Abstract][Full Text] [Related]
15. Antifungal activity of Syzygium cumini against Ascochyta rabiei-the cause of chickpea blight. Jabeen K; Javaid A Nat Prod Res; 2010 Jul; 24(12):1158-67. PubMed ID: 19588279 [TBL] [Abstract][Full Text] [Related]
16. Fungal endophytes in Peperomia obtusifolia and their potential as inhibitors of chickpea fungal pathogens. Ruiz Mostacero N; Castelli MV; Barolo MI; Amigot SL; Fulgueira CL; López SN World J Microbiol Biotechnol; 2021 Jan; 37(1):14. PubMed ID: 33394165 [TBL] [Abstract][Full Text] [Related]
17. Antifungal compounds from Melia azedarach leaves for management of Ascochyta rabiei, the cause of chickpea blight. Jabeen K; Javaid A; Ahmad E; Athar M Nat Prod Res; 2011 Feb; 25(3):264-76. PubMed ID: 20628965 [TBL] [Abstract][Full Text] [Related]
18. Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Cho S; Chen W; Muehlbauer FJ Theor Appl Genet; 2004 Aug; 109(4):733-9. PubMed ID: 15146319 [TBL] [Abstract][Full Text] [Related]
19. Development of a loop-mediated isothermal amplification method for the rapid diagnosis of Ascochyta rabiei L. in chickpeas. Chen X; Ma L; Qiang S; Ma D Sci Rep; 2016 May; 6():25688. PubMed ID: 27161564 [TBL] [Abstract][Full Text] [Related]
20. Modulation of fungal virulence through CRZ1 regulated F-BAR-dependent actin remodeling and endocytosis in chickpea infecting phytopathogen Ascochyta rabiei. Sinha M; Shree A; Singh K; Kumar K; Singh SK; Kumar V; Verma PK PLoS Genet; 2021 May; 17(5):e1009137. PubMed ID: 33999937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]