These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 28109212)
1. Two-structure thermodynamics for the TIP4P/2005 model of water covering supercooled and deeply stretched regions. Biddle JW; Singh RS; Sparano EM; Ricci F; González MA; Valeriani C; Abascal JL; Debenedetti PG; Anisimov MA; Caupin F J Chem Phys; 2017 Jan; 146(3):034502. PubMed ID: 28109212 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamics of supercooled and stretched water: Unifying two-structure description and liquid-vapor spinodal. Caupin F; Anisimov MA J Chem Phys; 2019 Jul; 151(3):034503. PubMed ID: 31325919 [TBL] [Abstract][Full Text] [Related]
3. Pattern of property extrema in supercooled and stretched water models and a new correlation for predicting the stability limit of the liquid state. Uralcan B; Latinwo F; Debenedetti PG; Anisimov MA J Chem Phys; 2019 Feb; 150(6):064503. PubMed ID: 30769971 [TBL] [Abstract][Full Text] [Related]
4. A comprehensive scenario of the thermodynamic anomalies of water using the TIP4P/2005 model. González MA; Valeriani C; Caupin F; Abascal JL J Chem Phys; 2016 Aug; 145(5):054505. PubMed ID: 27497563 [TBL] [Abstract][Full Text] [Related]
5. Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water. Singh RS; Biddle JW; Debenedetti PG; Anisimov MA J Chem Phys; 2016 Apr; 144(14):144504. PubMed ID: 27083735 [TBL] [Abstract][Full Text] [Related]
6. Two-state thermodynamics of the ST2 model for supercooled water. Holten V; Palmer JC; Poole PH; Debenedetti PG; Anisimov MA J Chem Phys; 2014 Mar; 140(10):104502. PubMed ID: 24628177 [TBL] [Abstract][Full Text] [Related]
7. Liquid-liquid phase transitions in supercooled water studied by computer simulations of various water models. Brovchenko I; Geiger A; Oleinikova A J Chem Phys; 2005 Jul; 123(4):044515. PubMed ID: 16095377 [TBL] [Abstract][Full Text] [Related]
8. Evidence of a liquid-liquid phase transition in H[Formula: see text]O and D[Formula: see text]O from path-integral molecular dynamics simulations. Eltareb A; Lopez GE; Giovambattista N Sci Rep; 2022 Apr; 12(1):6004. PubMed ID: 35397618 [TBL] [Abstract][Full Text] [Related]
9. Relative density and isobaric expansivity of cold and supercooled heavy water from 254 to 298 K and up to 100 MPa. Blahut A; Hykl J; Peukert P; Vinš V; Hrubý J J Chem Phys; 2019 Jul; 151(3):034505. PubMed ID: 31325943 [TBL] [Abstract][Full Text] [Related]
10. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model. Bauer BA; Patel S J Chem Phys; 2009 Aug; 131(8):084709. PubMed ID: 19725623 [TBL] [Abstract][Full Text] [Related]
11. Stability and Metastability of Liquid Water in a Machine-Learned Coarse-Grained Model with Short-Range Interactions. Dhabal D; Sankaranarayanan SKRS; Molinero V J Phys Chem B; 2022 Dec; 126(47):9881-9892. PubMed ID: 36383428 [TBL] [Abstract][Full Text] [Related]
12. Dynamical crossover and its connection to the Widom line in supercooled TIP4P/Ice water. Lupi L; Vázquez Ramírez B; Gallo P J Chem Phys; 2021 Aug; 155(5):054502. PubMed ID: 34364341 [TBL] [Abstract][Full Text] [Related]
13. Communication: minimum in the thermal conductivity of supercooled water: a computer simulation study. Bresme F; Biddle JW; Sengers JV; Anisimov MA J Chem Phys; 2014 Apr; 140(16):161104. PubMed ID: 24784243 [TBL] [Abstract][Full Text] [Related]
14. Relationship between the line of density anomaly and the lines of melting, crystallization, cavitation, and liquid spinodal in coarse-grained water models. Lu J; Chakravarty C; Molinero V J Chem Phys; 2016 Jun; 144(23):234507. PubMed ID: 27334179 [TBL] [Abstract][Full Text] [Related]
15. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice. Vega C; Abascal JL; Nezbeda I J Chem Phys; 2006 Jul; 125(3):34503. PubMed ID: 16863358 [TBL] [Abstract][Full Text] [Related]
16. Free-energy landscape and spinodals for the liquid-liquid transition of the TIP4P/2005 and TIP4P/Ice models of water. Sciortino F; Gartner TE; Debenedetti PG J Chem Phys; 2024 Mar; 160(10):. PubMed ID: 38456528 [TBL] [Abstract][Full Text] [Related]
17. Nature of the anomalies in the supercooled liquid state of the mW model of water. Holten V; Limmer DT; Molinero V; Anisimov MA J Chem Phys; 2013 May; 138(17):174501. PubMed ID: 23656138 [TBL] [Abstract][Full Text] [Related]
18. Equation of state for water and its line of density maxima down to -120 MPa. Pallares G; Gonzalez MA; Abascal JL; Valeriani C; Caupin F Phys Chem Chem Phys; 2016 Feb; 18(8):5896-900. PubMed ID: 26840756 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamic analysis of the stability of planar interfaces between coexisting phases and its application to supercooled water. Singh RS; Palmer JC; Panagiotopoulos AZ; Debenedetti PG J Chem Phys; 2019 Jun; 150(22):224503. PubMed ID: 31202225 [TBL] [Abstract][Full Text] [Related]
20. Metastable liquid-liquid transition in a molecular model of water. Palmer JC; Martelli F; Liu Y; Car R; Panagiotopoulos AZ; Debenedetti PG Nature; 2014 Jun; 510(7505):385-8. PubMed ID: 24943954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]