BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28110006)

  • 1. Effects of applied potential on phosphine formation in synthetic wastewater treatment by Microbial Electrolysis Cell (MEC).
    Liu W; Niu X; Chen W; An S; Sheng H
    Chemosphere; 2017 Apr; 173():172-179. PubMed ID: 28110006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term continuous production of H2 in a microbial electrolysis cell (MEC) treating saline wastewater.
    Carmona-Martínez AA; Trably E; Milferstedt K; Lacroix R; Etcheverry L; Bernet N
    Water Res; 2015 Sep; 81():149-56. PubMed ID: 26057262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen production and wastewater treatment in a microbial electrolysis cell with a biocathode.
    Xu Y; Jiang Y; Chen Y; Zhu S; Shen S
    Water Environ Res; 2014 Jul; 86(7):649-53. PubMed ID: 25112032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphine production in anaerobic wastewater treatment under tetracycline antibiotic pressure.
    Lu M; Niu X; Chen W; Liang Z; You S; Gu X
    J Environ Sci (China); 2018 Jul; 69():239-250. PubMed ID: 29941260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Influence of substrate COD on methane production in single-chambered microbial electrolysis cell].
    Teng WK; Liu GL; Luo HP; Zhang RD; Fu SY
    Huan Jing Ke Xue; 2015 Mar; 36(3):1021-6. PubMed ID: 25929072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: Bottlenecks and limitations.
    Escapa A; San-Martín MI; Mateos R; Morán A
    Bioresour Technol; 2015 Mar; 180():72-8. PubMed ID: 25590425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell.
    Zeppilli M; Villano M; Aulenta F; Lampis S; Vallini G; Majone M
    Environ Sci Pollut Res Int; 2015 May; 22(10):7349-60. PubMed ID: 24994102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages.
    Gil-Carrera L; Escapa A; Carracedo B; Morán A; Gómez X
    Bioresour Technol; 2013 Oct; 146():63-69. PubMed ID: 23911817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous high-purity bioelectrochemical nitrogen recovery from high N-loaded wastewaters.
    Ul Z; Sulonen M; Baeza JA; Guisasola A
    Bioelectrochemistry; 2024 Aug; 158():108707. PubMed ID: 38653107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of microbial electrolysis cell in urban wastewater treatment: integration options, challenges, and prospects.
    Katuri KP; Ali M; Saikaly PE
    Curr Opin Biotechnol; 2019 Jun; 57():101-110. PubMed ID: 30953903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimising the Hydraulic Retention Time in a Pilot-Scale Microbial Electrolysis Cell to Achieve High Volumetric Treatment Rates Using Concentrated Domestic Wastewater.
    Leicester DD; Amezaga JM; Moore A; Heidrich ES
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32604914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12 month period.
    Heidrich ES; Edwards SR; Dolfing J; Cotterill SE; Curtis TP
    Bioresour Technol; 2014 Dec; 173():87-95. PubMed ID: 25285764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research progress and application prospect of anaerobic biological phosphorus removal.
    Yang F; Zhang C; Rong H; Cao Y
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2133-2139. PubMed ID: 30683986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters.
    Kiely PD; Cusick R; Call DF; Selembo PA; Regan JM; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):388-94. PubMed ID: 20554197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The microbial synergy and response mechanisms of hydrolysis-acidification combined microbial electrolysis cell system with stainless-steel cathode for textile-dyeing wastewater treatment.
    Xie J; Zou X; Chang Y; Xie J; Liu H; Cui MH; Zhang TC; Chen C
    Sci Total Environ; 2023 Jan; 855():158912. PubMed ID: 36162577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs).
    Ren L; Siegert M; Ivanov I; Pisciotta JM; Logan BE
    Bioresour Technol; 2013 May; 136():322-8. PubMed ID: 23567698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogenic palladium enhances diatrizoate removal from hospital wastewater in a microbial electrolysis cell.
    De Gusseme B; Hennebel T; Vanhaecke L; Soetaert M; Desloover J; Wille K; Verbeken K; Verstraete W; Boon N
    Environ Sci Technol; 2011 Jul; 45(13):5737-45. PubMed ID: 21663047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell.
    Zhan G; Zhang L; Li D; Su W; Tao Y; Qian J
    Bioresour Technol; 2012 Jul; 116():271-7. PubMed ID: 22572551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ammonia on electrochemical active biofilm in microbial electrolysis cells for synthetic swine wastewater treatment.
    Wang N; Feng Y; Li Y; Zhang L; Liu J; Li N; He W
    Water Res; 2022 Jul; 219():118570. PubMed ID: 35597221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of organic carbon and nitrogen in a membraneless flow-through microbial electrolysis cell.
    Hussain A; Lebrun FM; Tartakovsky B
    Enzyme Microb Technol; 2017 Jul; 102():41-48. PubMed ID: 28465059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.