These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 28110019)

  • 41. Metabolic and genetic regulation of cardiac energy substrate preference.
    Kodde IF; van der Stok J; Smolenski RT; de Jong JW
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jan; 146(1):26-39. PubMed ID: 17081788
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment.
    Simões RV; Serganova IS; Kruchevsky N; Leftin A; Shestov AA; Thaler HT; Sukenick G; Locasale JW; Blasberg RG; Koutcher JA; Ackerstaff E
    Neoplasia; 2015 Aug; 17(8):671-84. PubMed ID: 26408259
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Heterogeneity in Cancer Metabolism: New Concepts in an Old Field.
    Gentric G; Mieulet V; Mechta-Grigoriou F
    Antioxid Redox Signal; 2017 Mar; 26(9):462-485. PubMed ID: 27228792
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PKM2 tyrosine phosphorylation and glutamine metabolism signal a different view of the Warburg effect.
    Dang CV
    Sci Signal; 2009 Nov; 2(97):pe75. PubMed ID: 19920249
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling.
    Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB
    Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer.
    DeBerardinis RJ; Cheng T
    Oncogene; 2010 Jan; 29(3):313-24. PubMed ID: 19881548
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mitochondrial metabolism as a dynamic regulatory hub to malignant transformation and anti-cancer drug resistance.
    Tomar MS; Kumar A; Shrivastava A
    Biochem Biophys Res Commun; 2024 Jan; 694():149382. PubMed ID: 38128382
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of hypoxia-induced metabolic reprogramming.
    Yang C; Jiang L; Zhang H; Shimoda LA; DeBerardinis RJ; Semenza GL
    Methods Enzymol; 2014; 542():425-55. PubMed ID: 24862279
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolic targeting as an anticancer strategy: dawn of a new era?
    Pan JG; Mak TW
    Sci STKE; 2007 Apr; 2007(381):pe14. PubMed ID: 17426345
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolic control at the cytosol-mitochondria interface in different growth phases of CHO cells.
    Wahrheit J; Niklas J; Heinzle E
    Metab Eng; 2014 May; 23():9-21. PubMed ID: 24525334
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glutamate synthesis has to be matched by its degradation - where do all the carbons go?
    Sonnewald U
    J Neurochem; 2014 Nov; 131(4):399-406. PubMed ID: 24989463
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multi-omics Reveal that c-Src Modulates the Mitochondrial Phosphotyrosine Proteome and Metabolism According to Nutrient Availability.
    Guedouari H; Savoie MC; Jean S; Djeungoue-Petga MA; Pichaud N; Hebert-Chatelain E
    Cell Physiol Biochem; 2020 May; 54(4):517-537. PubMed ID: 32428391
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comprehensive review on lactate metabolism in human health.
    Adeva-Andany M; López-Ojén M; Funcasta-Calderón R; Ameneiros-Rodríguez E; Donapetry-García C; Vila-Altesor M; Rodríguez-Seijas J
    Mitochondrion; 2014 Jul; 17():76-100. PubMed ID: 24929216
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inborn and acquired metabolic defects in cancer.
    Frezza C; Pollard PJ; Gottlieb E
    J Mol Med (Berl); 2011 Mar; 89(3):213-20. PubMed ID: 21301796
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic alterations in Krebs cycle and its impact on cancer pathogenesis.
    Sajnani K; Islam F; Smith RA; Gopalan V; Lam AK
    Biochimie; 2017 Apr; 135():164-172. PubMed ID: 28219702
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Doxorubicin increases oxidative metabolism in HL-1 cardiomyocytes as shown by 13C metabolic flux analysis.
    Strigun A; Wahrheit J; Niklas J; Heinzle E; Noor F
    Toxicol Sci; 2012 Feb; 125(2):595-606. PubMed ID: 22048646
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Therapeutic targeting of cancer cell metabolism.
    Dang CV; Hamaker M; Sun P; Le A; Gao P
    J Mol Med (Berl); 2011 Mar; 89(3):205-12. PubMed ID: 21301795
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Energy metabolism in cancer cells: how to explain the Warburg and Crabtree effects?
    Dell' Antone P
    Med Hypotheses; 2012 Sep; 79(3):388-92. PubMed ID: 22770870
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular Connections between Cancer Cell Metabolism and the Tumor Microenvironment.
    Justus CR; Sanderlin EJ; Yang LV
    Int J Mol Sci; 2015 May; 16(5):11055-86. PubMed ID: 25988385
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cancer metabolism: a therapeutic perspective.
    Martinez-Outschoorn UE; Peiris-Pagés M; Pestell RG; Sotgia F; Lisanti MP
    Nat Rev Clin Oncol; 2017 Jan; 14(1):11-31. PubMed ID: 27141887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.