These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1266 related articles for article (PubMed ID: 28110067)
1. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone. Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067 [TBL] [Abstract][Full Text] [Related]
2. Poly(glycerol sebacate) elastomer: a novel material for mechanically loaded bone regeneration. Zaky SH; Lee KW; Gao J; Jensen A; Close J; Wang Y; Almarza AJ; Sfeir C Tissue Eng Part A; 2014 Jan; 20(1-2):45-53. PubMed ID: 24020497 [TBL] [Abstract][Full Text] [Related]
3. Poly (glycerol sebacate) elastomer supports osteogenic phenotype for bone engineering applications. Zaky SH; Hangadora CK; Tudares MA; Gao J; Jensen A; Wang Y; Sfeir C; Almarza AJ Biomed Mater; 2014 Apr; 9(2):025003. PubMed ID: 24487088 [TBL] [Abstract][Full Text] [Related]
4. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808 [TBL] [Abstract][Full Text] [Related]
5. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering. Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512 [TBL] [Abstract][Full Text] [Related]
6. β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering. Yang K; Zhang J; Ma X; Ma Y; Kan C; Ma H; Li Y; Yuan Y; Liu C Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():37-47. PubMed ID: 26249563 [TBL] [Abstract][Full Text] [Related]
7. Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering. Frydrych M; Román S; MacNeil S; Chen B Acta Biomater; 2015 May; 18():40-9. PubMed ID: 25769230 [TBL] [Abstract][Full Text] [Related]
8. Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates. Kerativitayanan P; Gaharwar AK Acta Biomater; 2015 Oct; 26():34-44. PubMed ID: 26297886 [TBL] [Abstract][Full Text] [Related]
9. PGS Scaffolds Promote the In Vivo Survival and Directional Differentiation of Bone Marrow Mesenchymal Stem Cells Restoring the Morphology and Function of Wounded Rat Uterus. Xiao B; Yang W; Lei D; Huang J; Yin Y; Zhu Y; You Z; Wang F; Sun S Adv Healthc Mater; 2019 Mar; 8(5):e1801455. PubMed ID: 30734535 [TBL] [Abstract][Full Text] [Related]
10. The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites. Liang SL; Cook WD; Thouas GA; Chen QZ Biomaterials; 2010 Nov; 31(33):8516-29. PubMed ID: 20739061 [TBL] [Abstract][Full Text] [Related]
11. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering. Lin D; Yang K; Tang W; Liu Y; Yuan Y; Liu C Colloids Surf B Biointerfaces; 2015 Jul; 131():1-11. PubMed ID: 25935647 [TBL] [Abstract][Full Text] [Related]
12. Use of cyclic strain bioreactor for the upregulation of key tenocyte gene expression on Poly(glycerol-sebacate) (PGS) sheets. Deniz P; Guler S; Çelik E; Hosseinian P; Aydin HM Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110293. PubMed ID: 31753347 [TBL] [Abstract][Full Text] [Related]
13. Artificial niche combining elastomeric substrate and platelets guides vascular differentiation of bone marrow mononuclear cells. Wu W; Allen R; Gao J; Wang Y Tissue Eng Part A; 2011 Aug; 17(15-16):1979-92. PubMed ID: 21449713 [TBL] [Abstract][Full Text] [Related]
14. PGS/HAp Microporous Composite Scaffold Obtained in the TIPS-TCL-SL Method: An Innovation for Bone Tissue Engineering. Piszko P; Włodarczyk M; Zielińska S; Gazińska M; Płociński P; Rudnicka K; Szwed A; Krupa A; Grzymajło M; Sobczak-Kupiec A; Słota D; Kobielarz M; Wojtków M; Szustakiewicz K Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445293 [TBL] [Abstract][Full Text] [Related]
15. Repair of critical-sized bone defects with anti-miR-31-expressing bone marrow stromal stem cells and poly(glycerol sebacate) scaffolds. Deng Y; Bi X; Zhou H; You Z; Wang Y; Gu P; Fan X Eur Cell Mater; 2014 Jan; 27():13-24; discussion 24-5. PubMed ID: 24425157 [TBL] [Abstract][Full Text] [Related]
16. Mesenchymal Cells Affect Salivary Epithelial Cell Morphology on PGS/PLGA Core/Shell Nanofibers. Sfakis L; Kamaldinov T; Khmaladze A; Hosseini ZF; Nelson DA; Larsen M; Castracane J Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29596382 [TBL] [Abstract][Full Text] [Related]
17. Urethane-based low-temperature curing, highly-customized and multifunctional poly(glycerol sebacate)-co-poly(ethylene glycol) copolymers. Wang Z; Ma Y; Wang Y; Liu Y; Chen K; Wu Z; Yu S; Yuan Y; Liu C Acta Biomater; 2018 Apr; 71():279-292. PubMed ID: 29549052 [TBL] [Abstract][Full Text] [Related]
18. Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes. Xu B; Li Y; Fang X; Thouas GA; Cook WD; Newgreen DF; Chen Q J Mech Behav Biomed Mater; 2013 Dec; 28():354-65. PubMed ID: 24125905 [TBL] [Abstract][Full Text] [Related]
19. Highly elastic and suturable electrospun poly(glycerol sebacate) fibrous scaffolds. Jeffries EM; Allen RA; Gao J; Pesce M; Wang Y Acta Biomater; 2015 May; 18():30-9. PubMed ID: 25686558 [TBL] [Abstract][Full Text] [Related]
20. Microwave-assisted facile fabrication of porous poly (glycerol sebacate) scaffolds. Lee SH; Lee KW; Gade PS; Robertson AM; Wang Y J Biomater Sci Polym Ed; 2018; 29(7-9):907-916. PubMed ID: 28569644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]