BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 28110251)

  • 1. Gold nanomaterials for the selective capturing and SERS diagnosis of toxins in aqueous and biological fluids.
    Hassanain WA; Izake EL; Schmidt MS; Ayoko GA
    Biosens Bioelectron; 2017 May; 91():664-672. PubMed ID: 28110251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel SERS-based aptasensor for ultrasensitive sensing of microcystin-LR.
    He D; Wu Z; Cui B; Jin Z
    Food Chem; 2019 Apr; 278():197-202. PubMed ID: 30583362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplexed SERS Detection of Microcystins with Aptamer-Driven Core-Satellite Assemblies.
    Luo X; Zhao X; Wallace GQ; Brunet MH; Wilkinson KJ; Wu P; Cai C; Bazuin CG; Masson JF
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6545-6556. PubMed ID: 33522805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-Responsive Strand Displacement Coupling with DNA Origami/AuNPs Strategy for the Determination of Microcystin-LR Using Surface-Enhanced Raman Spectroscopy.
    Huo B; Xia L; Gao Z; Li G; Hu Y
    Anal Chem; 2022 Aug; 94(34):11889-11897. PubMed ID: 35973129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G-quadruplex DNAzyme-based microcystin-LR (toxin) determination by a novel immunosensor.
    Zhu Y; Xu L; Ma W; Chen W; Yan W; Kuang H; Wang L; Xu C
    Biosens Bioelectron; 2011 Jul; 26(11):4393-8. PubMed ID: 21632232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gap-Tethered Au@AgAu Raman Tags for the Ratiometric Detection of MC-LR.
    Zhao Y; Zheng F; Ke W; Zhang W; Shi L; Liu H
    Anal Chem; 2019 Jun; 91(11):7162-7172. PubMed ID: 31066265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative detection of microcystin-LR in Bellamya aeruginosa by thin-layer chromatography coupled with surface-enhanced Raman spectroscopy based on in-situ ZIF-67/Ag NPs/Au NWs composite substrate.
    Jiang J; Liu M; Xu D; Jiang T; Zhang J
    Food Chem; 2024 Sep; 452():139481. PubMed ID: 38723565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid isolation and detection of erythropoietin in blood plasma by magnetic core gold nanoparticles and portable Raman spectroscopy.
    Agoston R; Izake EL; Sivanesan A; Lott WB; Sillence M; Steel R
    Nanomedicine; 2016 Apr; 12(3):633-641. PubMed ID: 26656628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dual-signal readout enzyme-free immunosensor based on hybridization chain reaction-assisted formation of copper nanoparticles for the detection of microcystin-LR.
    He Z; Cai Y; Yang Z; Li P; Lei H; Liu W; Liu Y
    Biosens Bioelectron; 2019 Feb; 126():151-159. PubMed ID: 30399517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preconcentration and SERS-based determination of infliximab in blood by using a TNF-α-modified gold-coated copper oxide nanomaterial.
    Muneer S; Ayoko GA; Islam N; Izake EL
    Mikrochim Acta; 2019 Nov; 186(12):780. PubMed ID: 31729556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of SERS substrate using phage-based magnetic template for triplex assay in sepsis diagnosis.
    Nguyen AH; Shin Y; Sim SJ
    Biosens Bioelectron; 2016 Nov; 85():522-528. PubMed ID: 27209579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive SERS immunoassay based on diatom biosilica for detection of interleukins in blood plasma.
    Kamińska A; Sprynskyy M; Winkler K; Szymborski T
    Anal Bioanal Chem; 2017 Nov; 409(27):6337-6347. PubMed ID: 28852782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Qualitative and quantitative detection of microcystin-LR based on SERS-FET dual-mode biosensor.
    Tian M; Wang J; Li C; Wang Z; Liu G; Lv E; Zhao X; Li Z; Cao D; Liu H; Zhang C; Xu S; Man B
    Biosens Bioelectron; 2022 Sep; 212():114434. PubMed ID: 35671700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples.
    Li X; Cheng R; Shi H; Tang B; Xiao H; Zhao G
    J Hazard Mater; 2016 Mar; 304():474-80. PubMed ID: 26619046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol.
    Yang K; Hu Y; Dong N
    Biosens Bioelectron; 2016 Jun; 80():373-377. PubMed ID: 26866562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ assembly of biocompatible core-shell hierarchical nanostructures sensitized immunosensor for microcystin-LR detection.
    Gan C; Ling L; He Z; Lei H; Liu Y
    Biosens Bioelectron; 2016 Apr; 78():381-389. PubMed ID: 26655177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ assembly of gold nanoparticles on nitrogen-doped carbon nanotubes for sensitive immunosensing of microcystin-LR.
    Zhang J; Lei J; Pan R; Leng C; Hu Z; Ju H
    Chem Commun (Camb); 2011 Jan; 47(2):668-70. PubMed ID: 21109895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive polydopamine bi-functionalized SERS immunoassay for microalbuminuria detection.
    Huang Z; Zhang R; Chen H; Weng W; Lin Q; Deng D; Li Z; Kong J
    Biosens Bioelectron; 2019 Oct; 142():111542. PubMed ID: 31382096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic gold nanoparticles in SERS-based sandwich immunoassay for antigen detection by well oriented antibodies.
    Baniukevic J; Hakki Boyaci I; Goktug Bozkurt A; Tamer U; Ramanavicius A; Ramanaviciene A
    Biosens Bioelectron; 2013 May; 43():281-8. PubMed ID: 23334004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis.
    Kamińska A; Szymborski T; Jaroch T; Zmysłowski A; Szterk A
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():208-217. PubMed ID: 29519430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.