BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28111492)

  • 1. Adaptive Kinematic Control of a Robotic Venipuncture Device Based on Stereo Vision, Ultrasound, and Force Guidance.
    Balter ML; Chen AI; Maguire TJ; Yarmush ML
    IEEE Trans Ind Electron; 2017 Feb; 64(2):1626-1635. PubMed ID: 28111492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The System Design and Evaluation of a 7-DOF Image-Guided Venipuncture Robot.
    Balter ML; Chen AI; Maguire TJ; Yarmush ML
    IEEE Trans Robot; 2015 Aug; 31(4):1044-1053. PubMed ID: 26257588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time Needle Steering in Response to Rolling Vein Deformation by a 9-DOF Image-Guided Autonomous Venipuncture Robot.
    Chen AI; Balter ML; Maguire TJ; Yarmush ML
    Rep U S; 2015; 2015():2633-2638. PubMed ID: 26779381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A venipuncture robot with decoupled position and attitude guided by near-infrared vision and force feedback.
    He T; Guo C; Liu H; Jiang L
    Int J Med Robot; 2023 Aug; 19(4):e2512. PubMed ID: 36809654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D image-guided robotic needle positioning system for small animal interventions.
    Bax JS; Waring CS; Sherebrin S; Stapleton S; Hudson TJ; Jaffray DA; Lacefield JC; Fenster A
    Med Phys; 2013 Jan; 40(1):011909. PubMed ID: 23298100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-robot ultrasound-guided needle placement: closing the planning-imaging-action loop.
    Kojcev R; Fuerst B; Zettinig O; Fotouhi J; Lee SC; Frisch B; Taylor R; Sinibaldi E; Navab N
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1173-81. PubMed ID: 27097600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards Autonomous Robotic Biopsy-Design, Modeling and Control of a Robot for Needle Insertion of a Commercial Full Core Biopsy Instrument.
    Sajadi SM; Karbasi SM; Brun H; Tørresen J; Elle OJ; Mathiassen K
    Front Robot AI; 2022; 9():896267. PubMed ID: 35832930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and validation of a CT-guided robotic system for lung cancer brachytherapy.
    Dou H; Jiang S; Yang Z; Sun L; Ma X; Huo B
    Med Phys; 2017 Sep; 44(9):4828-4837. PubMed ID: 28657112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Evaluation of a Robotic Device for Automated Tail Vein Cannulations in Rodent Models.
    Fromholtz A; Balter ML; Chen AI; Leipheimer JM; Shrirao A; Maguire TJ; Yarmush ML
    J Med Device; 2017 Dec; 11(4):0410081-410087. PubMed ID: 29230256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Evaluation of a Handheld Robotic Device for Peripheral Catheterization.
    Leipheimer J; Balter M; Chen A; Yarmush M
    J Med Device; 2022 Jun; 16(2):021015. PubMed ID: 35284032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Near Infrared and Ultrasound Imaging of Peripheral Blood Vessels for Real-Time Localization and Needle Guidance.
    Chen AI; Balter ML; Maguire TJ; Yarmush ML
    Med Image Comput Comput Assist Interv; 2016 Oct; 9902():388-396. PubMed ID: 27981261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D ultrasound registration-based visual servoing for neurosurgical navigation.
    Zettinig O; Frisch B; Virga S; Esposito M; Rienmüller A; Meyer B; Hennersperger C; Ryang YM; Navab N
    Int J Comput Assist Radiol Surg; 2017 Sep; 12(9):1607-1619. PubMed ID: 28236117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and rotational quality assurance of 6DOF patient tracking systems.
    Belcher AH; Liu X; Grelewicz Z; Wiersma RD
    Med Phys; 2016 Jun; 43(6):2785-2793. PubMed ID: 27277026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. System Design and Development of a Robotic Device for Automated Venipuncture and Diagnostic Blood Cell Analysis.
    Balter ML; Chen AI; Fromholtz A; Gorshkov A; Maguire TJ; Yarmush ML
    Rep U S; 2016 Oct; 2016():514-520. PubMed ID: 28239509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intravascular Tracking of Micro-Agents Using Medical Ultrasound: Towards Clinical Applications.
    Suligoj F; Heunis CM; Mohanty S; Misra S
    IEEE Trans Biomed Eng; 2022 Dec; 69(12):3739-3747. PubMed ID: 35604994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-in-human evaluation of a hand-held automated venipuncture device for rapid venous blood draws.
    Leipheimer JM; Balter ML; Chen AI; Pantin EJ; Davidovich AE; Labazzo KS; Yarmush ML
    Technology (Singap World Sci); 2019; 7(3-4):98-107. PubMed ID: 32292800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Portable robot for autonomous venipuncture using 3D near infrared image guidance.
    Chen A; Nikitczuk K; Nikitczuk J; Maguire T; Yarmush M
    Technology (Singap World Sci); 2013 Sep; 1(1):72-87. PubMed ID: 26120592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Flexible Transoral Robot Towards COVID-19 Swab Sampling.
    Li C; Gu X; Xiao X; Lim CM; Duan X; Ren H
    Front Robot AI; 2021; 8():612167. PubMed ID: 33912594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and validation of a medical robotic device system to control two collaborative robots for ultrasound-guided needle insertions.
    Berger J; Unger M; Keller J; Reich CM; Neumuth T; Melzer A
    Front Robot AI; 2022; 9():875845. PubMed ID: 36246494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a Force-Torque Sensor for Self-Calibration of a 6-DOF Medical Robot.
    Joubair A; Zhao LF; Bigras P; Bonev IA
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27258278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.