These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 28111538)
1. Divergent Human Cortical Regions for Processing Distinct Acoustic-Semantic Categories of Natural Sounds: Animal Action Sounds vs. Vocalizations. Webster PJ; Skipper-Kallal LM; Frum CA; Still HN; Ward BD; Lewis JW Front Neurosci; 2016; 10():579. PubMed ID: 28111538 [TBL] [Abstract][Full Text] [Related]
2. Different categories of living and non-living sound-sources activate distinct cortical networks. Engel LR; Frum C; Puce A; Walker NA; Lewis JW Neuroimage; 2009 Oct; 47(4):1778-91. PubMed ID: 19465134 [TBL] [Abstract][Full Text] [Related]
3. Auditory object salience: human cortical processing of non-biological action sounds and their acoustic signal attributes. Lewis JW; Talkington WJ; Tallaksen KC; Frum CA Front Syst Neurosci; 2012; 6():27. PubMed ID: 22582038 [TBL] [Abstract][Full Text] [Related]
4. Auditory object perception: A neurobiological model and prospective review. Brefczynski-Lewis JA; Lewis JW Neuropsychologia; 2017 Oct; 105():223-242. PubMed ID: 28467888 [TBL] [Abstract][Full Text] [Related]
5. Hearing and orally mimicking different acoustic-semantic categories of natural sound engage distinct left hemisphere cortical regions. Lewis JW; Silberman MJ; Donai JJ; Frum CA; Brefczynski-Lewis JA Brain Lang; 2018 Aug; 183():64-78. PubMed ID: 29966815 [TBL] [Abstract][Full Text] [Related]
6. Cortical networks representing object categories and high-level attributes of familiar real-world action sounds. Lewis JW; Talkington WJ; Puce A; Engel LR; Frum C J Cogn Neurosci; 2011 Aug; 23(8):2079-101. PubMed ID: 20812786 [TBL] [Abstract][Full Text] [Related]
7. Distinct cortical pathways for processing tool versus animal sounds. Lewis JW; Brefczynski JA; Phinney RE; Janik JJ; DeYoe EA J Neurosci; 2005 May; 25(21):5148-58. PubMed ID: 15917455 [TBL] [Abstract][Full Text] [Related]
8. Probing category selectivity for environmental sounds in the human auditory brain. Doehrmann O; Naumer MJ; Volz S; Kaiser J; Altmann CF Neuropsychologia; 2008 Sep; 46(11):2776-86. PubMed ID: 18597794 [TBL] [Abstract][Full Text] [Related]
9. Chinese-English bilinguals show linguistic-perceptual links in the brain associating short spoken phrases with corresponding real-world natural action sounds by semantic category. Valencia GN; Khoo S; Wong T; Ta J; Hou B; Barsalou LW; Hazen K; Lin HH; Wang S; Brefczynski-Lewis JA; Frum CA; Lewis JW Lang Cogn Neurosci; 2021; 36(6):773-790. PubMed ID: 34568509 [TBL] [Abstract][Full Text] [Related]
10. Cortical representation of natural complex sounds: effects of acoustic features and auditory object category. Leaver AM; Rauschecker JP J Neurosci; 2010 Jun; 30(22):7604-12. PubMed ID: 20519535 [TBL] [Abstract][Full Text] [Related]
11. Human cortical organization for processing vocalizations indicates representation of harmonic structure as a signal attribute. Lewis JW; Talkington WJ; Walker NA; Spirou GA; Jajosky A; Frum C; Brefczynski-Lewis JA J Neurosci; 2009 Feb; 29(7):2283-96. PubMed ID: 19228981 [TBL] [Abstract][Full Text] [Related]
12. Cortical network differences in the sighted versus early blind for recognition of human-produced action sounds. Lewis JW; Frum C; Brefczynski-Lewis JA; Talkington WJ; Walker NA; Rapuano KM; Kovach AL Hum Brain Mapp; 2011 Dec; 32(12):2241-55. PubMed ID: 21305666 [TBL] [Abstract][Full Text] [Related]
13. Cortical processing of pitch: Model-based encoding and decoding of auditory fMRI responses to real-life sounds. De Angelis V; De Martino F; Moerel M; Santoro R; Hausfeld L; Formisano E Neuroimage; 2018 Oct; 180(Pt A):291-300. PubMed ID: 29146377 [TBL] [Abstract][Full Text] [Related]
14. Auditory Selectivity for Spectral Contrast in Cortical Neurons and Behavior. So NLT; Edwards JA; Woolley SMN J Neurosci; 2020 Jan; 40(5):1015-1027. PubMed ID: 31826944 [TBL] [Abstract][Full Text] [Related]
15. An auditory region in the primate insular cortex responding preferentially to vocal communication sounds. Remedios R; Logothetis NK; Kayser C J Neurosci; 2009 Jan; 29(4):1034-45. PubMed ID: 19176812 [TBL] [Abstract][Full Text] [Related]
16. Cochlea to categories: The spatiotemporal dynamics of semantic auditory representations. Lowe MX; Mohsenzadeh Y; Lahner B; Charest I; Oliva A; Teng S Cogn Neuropsychol; 2021; 38(7-8):468-489. PubMed ID: 35729704 [TBL] [Abstract][Full Text] [Related]
17. High-field functional magnetic resonance imaging of vocalization processing in marmosets. Sadagopan S; Temiz-Karayol NZ; Voss HU Sci Rep; 2015 Jun; 5():10950. PubMed ID: 26091254 [TBL] [Abstract][Full Text] [Related]
18. A temporal hierarchy for conspecific vocalization discrimination in humans. De Lucia M; Clarke S; Murray MM J Neurosci; 2010 Aug; 30(33):11210-21. PubMed ID: 20720129 [TBL] [Abstract][Full Text] [Related]
19. Music listening engages specific cortical regions within the temporal lobes: differences between musicians and non-musicians. Angulo-Perkins A; Aubé W; Peretz I; Barrios FA; Armony JL; Concha L Cortex; 2014 Oct; 59():126-37. PubMed ID: 25173956 [TBL] [Abstract][Full Text] [Related]
20. Processing of communication sounds: contributions of learning, memory, and experience. Poremba A; Bigelow J; Rossi B Hear Res; 2013 Nov; 305():31-44. PubMed ID: 23792078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]