These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 28111666)

  • 1. A density functional theory based approach for predicting melting points of ionic liquids.
    Chen L; Bryantsev VS
    Phys Chem Chem Phys; 2017 Feb; 19(5):4114-4124. PubMed ID: 28111666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies.
    Krossing I; Slattery JM; Daguenet C; Dyson PJ; Oleinikova A; Weingärtner H
    J Am Chem Soc; 2006 Oct; 128(41):13427-34. PubMed ID: 17031955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical studies on the noncovalent interaction of fructose and functionalized ionic liquids.
    Ju Z; Yao X; Luo Z; Cao M; Xiao W
    Carbohydr Res; 2020 Jan; 487():107882. PubMed ID: 31812877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Volume-Based Approach for Predicting Thermophysical Behavior of Ionic Liquids and Ionic Liquid Crystals.
    Nelyubina YV; Shaplov AS; Lozinskaya EI; Buzin MI; Vygodskii YS
    J Am Chem Soc; 2016 Aug; 138(32):10076-9. PubMed ID: 27479022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imidazolium-based ionic liquids with different fatty acid anions: phase behavior, electronic structure and ionic conductivity investigation.
    Biswas M; Dule M; Samanta PN; Ghosh S; Mandal TK
    Phys Chem Chem Phys; 2014 Aug; 16(30):16255-63. PubMed ID: 24974877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics study of the effect of alkyl chain length on melting points of [CnMIM][PF6] ionic liquids.
    Zhang Y; Maginn EJ
    Phys Chem Chem Phys; 2014 Jul; 16(26):13489-99. PubMed ID: 24888298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the different roles of anions and cations in the solvation of enzymes in ionic liquids.
    Klähn M; Lim GS; Seduraman A; Wu P
    Phys Chem Chem Phys; 2011 Jan; 13(4):1649-62. PubMed ID: 21132189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico prediction of the melting points of ionic liquids from thermodynamic considerations: a case study on 67 salts with a melting point range of 337 degrees C.
    Preiss U; Bulut S; Krossing I
    J Phys Chem B; 2010 Sep; 114(34):11133-40. PubMed ID: 20690695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and properties of high stability geminal dicationic ionic liquids.
    Anderson JL; Ding R; Ellern A; Armstrong DW
    J Am Chem Soc; 2005 Jan; 127(2):593-604. PubMed ID: 15643883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple physical model for the simultaneous rationalisation of melting points and heat capacities of ionic liquids.
    Zvereva EE; Katsyuba SA; Dyson PJ
    Phys Chem Chem Phys; 2010 Nov; 12(41):13780-7. PubMed ID: 20852767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DFT study of the energetic and noncovalent interactions between imidazolium ionic liquids and hydrofluoric acid.
    Velarde MV; Gallo M; Alonso PA; Miranda AD; Dominguez JM
    J Phys Chem B; 2015 Apr; 119(15):5002-9. PubMed ID: 25803741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of alkyl-group flexibility on the melting point of imidazolium-based ionic liquids.
    Bernardino K; Zhang Y; Ribeiro MCC; Maginn EJ
    J Chem Phys; 2020 Jul; 153(4):044504. PubMed ID: 32752715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyl-functionalized 1-(2-hydroxyethyl)-3-methyl imidazolium ionic liquids: thermodynamic and structural properties using molecular dynamics simulations and ab initio calculations.
    Fakhraee M; Zandkarimi B; Salari H; Gholami MR
    J Phys Chem B; 2014 Dec; 118(49):14410-28. PubMed ID: 25394200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous Melting Point of Multicharge Ionic Liquids: Structural, Electrostatic, and Orbital Properties of [Ln(NO
    Yuan WL; Wang SL; Wang Y; Zhang L; He L; Tao GH
    Inorg Chem; 2020 Sep; 59(18):13700-13708. PubMed ID: 32902266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of dispersion forces for prediction of thermodynamic and transport properties of some common ionic liquids.
    Izgorodina EI; Golze D; Maganti R; Armel V; Taige M; Schubert TJ; MacFarlane DR
    Phys Chem Chem Phys; 2014 Apr; 16(16):7209-21. PubMed ID: 24113510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of density functional theory and vibrational spectroscopy toward the rational design of ionic liquids.
    Katsyuba SA; Zvereva EE; Vidis A; Dyson PJ
    J Phys Chem A; 2007 Jan; 111(2):352-70. PubMed ID: 17214473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imidazolium 2-substituted 4,5-dicyanoimidazolate ionic liquids: synthesis, crystal structures and structure-thermal property relationships.
    Mondal SS; Müller H; Junginger M; Kelling A; Schilde U; Strehmel V; Holdt HJ
    Chemistry; 2014 Jun; 20(26):8170-81. PubMed ID: 24888334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraction of tryptophan with ionic liquids studied with molecular dynamics simulations.
    Seduraman A; Wu P; Klähn M
    J Phys Chem B; 2012 Jan; 116(1):296-304. PubMed ID: 22136607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutual solubilities of water and hydrophobic ionic liquids.
    Freire MG; Neves CM; Carvalho PJ; Gardas RL; Fernandes AM; Marrucho IM; Santos LM; Coutinho JA
    J Phys Chem B; 2007 Nov; 111(45):13082-9. PubMed ID: 17958353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capturing the crystal: prediction of enthalpy of sublimation, crystal lattice energy, and melting points of organic compounds.
    Salahinejad M; Le TC; Winkler DA
    J Chem Inf Model; 2013 Jan; 53(1):223-9. PubMed ID: 23215043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.