These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 28111904)
1. The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease. Cohen JM; Venesky MD; Sauer EL; Civitello DJ; McMahon TA; Roznik EA; Rohr JR Ecol Lett; 2017 Feb; 20(2):184-193. PubMed ID: 28111904 [TBL] [Abstract][Full Text] [Related]
2. An interaction between climate change and infectious disease drove widespread amphibian declines. Cohen JM; Civitello DJ; Venesky MD; McMahon TA; Rohr JR Glob Chang Biol; 2019 Mar; 25(3):927-937. PubMed ID: 30484936 [TBL] [Abstract][Full Text] [Related]
3. Thermal physiology, disease, and amphibian declines on the eastern slopes of the Andes. Catenazzi A; Lehr E; Vredenburg VT Conserv Biol; 2014 Apr; 28(2):509-17. PubMed ID: 24372791 [TBL] [Abstract][Full Text] [Related]
4. Variation in individual temperature preferences, not behavioural fever, affects susceptibility to chytridiomycosis in amphibians. Sauer EL; Fuller RC; Richards-Zawacki CL; Sonn J; Sperry JH; Rohr JR Proc Biol Sci; 2018 Aug; 285(1885):. PubMed ID: 30135162 [TBL] [Abstract][Full Text] [Related]
5. Impacts of thermal mismatches on chytrid fungus Batrachochytrium dendrobatidis prevalence are moderated by life stage, body size, elevation and latitude. Cohen JM; McMahon TA; Ramsay C; Roznik EA; Sauer EL; Bessler S; Civitello DJ; Delius BK; Halstead N; Knutie SA; Nguyen KH; Ortega N; Sears B; Venesky MD; Young S; Rohr JR Ecol Lett; 2019 May; 22(5):817-825. PubMed ID: 30816626 [TBL] [Abstract][Full Text] [Related]
6. Climate forcing of an emerging pathogenic fungus across a montane multi-host community. Clare FC; Halder JB; Daniel O; Bielby J; Semenov MA; Jombart T; Loyau A; Schmeller DS; Cunningham AA; Rowcliffe M; Garner TW; Bosch J; Fisher MC Philos Trans R Soc Lond B Biol Sci; 2016 Dec; 371(1709):. PubMed ID: 28080980 [TBL] [Abstract][Full Text] [Related]
7. Confronting inconsistencies in the amphibian-chytridiomycosis system: implications for disease management. Venesky MD; Raffel TR; McMahon TA; Rohr JR Biol Rev Camb Philos Soc; 2014 May; 89(2):477-83. PubMed ID: 24118903 [TBL] [Abstract][Full Text] [Related]
8. Does the thermal mismatch hypothesis predict disease outcomes in different morphs of a terrestrial salamander? Venesky MD; DeMarchi J; Hickerson C; Anthony CD J Exp Zool A Ecol Integr Physiol; 2022 Jun; 337(5):467-476. PubMed ID: 35167180 [TBL] [Abstract][Full Text] [Related]
9. Shifts in temperature influence how Batrachochytrium dendrobatidis infects amphibian larvae. Bradley PW; Brawner MD; Raffel TR; Rohr JR; Olson DH; Blaustein AR PLoS One; 2019; 14(9):e0222237. PubMed ID: 31536533 [TBL] [Abstract][Full Text] [Related]
10. Environmental determinants of recent endemism of Batrachochytrium dendrobatidis infections in amphibian assemblages in the absence of disease outbreaks. Spitzen-Van Der Sluijs A; Martel A; Hallmann CA; Bosman W; Garner TW; Van Rooij P; Jooris R; Haesebrouck F; Pasmans F Conserv Biol; 2014 Oct; 28(5):1302-11. PubMed ID: 24641583 [TBL] [Abstract][Full Text] [Related]
11. Infection with Batrachochytrium dendrobatidis lowers heat tolerance of tadpole hosts and cannot be cleared by brief exposure to CTmax. Fernández-Loras A; Boyero L; Correa-Araneda F; Tejedo M; Hettyey A; Bosch J PLoS One; 2019; 14(4):e0216090. PubMed ID: 31034535 [TBL] [Abstract][Full Text] [Related]
13. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures. Xie GY; Olson DH; Blaustein AR PLoS One; 2016; 11(8):e0160746. PubMed ID: 27513565 [TBL] [Abstract][Full Text] [Related]
14. Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians. Bataille A; Fong JJ; Cha M; Wogan GOU; Baek HJ; Lee H; Min MS; Waldman B Mol Ecol; 2013 Aug; 22(16):4196-4209. PubMed ID: 23802586 [TBL] [Abstract][Full Text] [Related]
15. Susceptibility to the amphibian chytrid fungus varies with ontogeny in the direct-developing frog, Eleutherodactylus coqui. Langhammer PF; Burrowes PA; Lips KR; Bryant AB; Collins JP J Wildl Dis; 2014 Jul; 50(3):438-46. PubMed ID: 24807186 [TBL] [Abstract][Full Text] [Related]
16. Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs. Richards-Zawacki CL Proc Biol Sci; 2010 Feb; 277(1681):519-28. PubMed ID: 19864287 [TBL] [Abstract][Full Text] [Related]
17. Future potential distribution of the emerging amphibian chytrid fungus under anthropogenic climate change. Rödder D; Kielgast J; Lötters S Dis Aquat Organ; 2010 Nov; 92(2-3):201-7. PubMed ID: 21268982 [TBL] [Abstract][Full Text] [Related]
18. Ancestral chytrid pathogen remains hypervirulent following its long coevolution with amphibian hosts. Fu M; Waldman B Proc Biol Sci; 2019 Jun; 286(1904):20190833. PubMed ID: 31161901 [TBL] [Abstract][Full Text] [Related]
19. Elevated temperature as a treatment for Batrachochytrium dendrobatidis infection in captive frogs. Chatfield MW; Richards-Zawacki CL Dis Aquat Organ; 2011 May; 94(3):235-8. PubMed ID: 21790070 [TBL] [Abstract][Full Text] [Related]