These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 28111928)

  • 1. Electrospun poly(hydroxybutyrate) scaffolds promote engraftment of human skin equivalents via macrophage M2 polarization and angiogenesis.
    Castellano D; Sanchis A; Blanes M; Pérez Del Caz MD; Ruiz-Saurí A; Piquer-Gil M; Pelacho B; Marco B; Garcia N; Ontoria-Oviedo I; Cambra V; Prosper F; Sepúlveda P
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e983-e994. PubMed ID: 28111928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo biocompatibility assessment of poly (ether imide) electrospun scaffolds.
    Haase T; Krost A; Sauter T; Kratz K; Peter J; Kamann S; Jung F; Lendlein A; Zohlnhöfer D; Rüder C
    J Tissue Eng Regen Med; 2017 Apr; 11(4):1034-1044. PubMed ID: 25712330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of M1 and M2 polarization of macrophages in vascularized human dermo-epidermal skin substitutes in vivo.
    Klar AS; Michalak-Mićka K; Biedermann T; Simmen-Meuli C; Reichmann E; Meuli M
    Pediatr Surg Int; 2018 Feb; 34(2):129-135. PubMed ID: 29124400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of electrospun polymers reveals poly(3-hydroxybutyrate) fiber as a superior scaffold for cardiac repair.
    Castellano D; Blanes M; Marco B; Cerrada I; Ruiz-Saurí A; Pelacho B; Araña M; Montero JA; Cambra V; Prosper F; Sepúlveda P
    Stem Cells Dev; 2014 Jul; 23(13):1479-90. PubMed ID: 24564648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications.
    Ramier J; Bouderlique T; Stoilova O; Manolova N; Rashkov I; Langlois V; Renard E; Albanese P; Grande D
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():161-9. PubMed ID: 24656364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zein/Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) electrospun blend fiber scaffolds: Preparation, characterization and cytocompatibility.
    Zhijiang C; Qin Z; Xianyou S; Yuanpei L
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():797-806. PubMed ID: 27987775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering.
    Xu H; Li H; Ke Q; Chang J
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8706-18. PubMed ID: 25826222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sugar-cane bagasse cellulose-based scaffolds promote multi-cellular interactions, angiogenesis and reduce inflammation for skin tissue regeneration.
    Ramphul H; Gimié F; Andries J; Jhurry D; Bhaw-Luximon A
    Int J Biol Macromol; 2020 Aug; 157():296-310. PubMed ID: 32339588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Biocompatibility of electrospun poly(3-hydroxybutyrate) and its composites scaffolds for tissue engineering].
    Zharkova II; Staroverova OV; Voinova VV; Andreeva NV; Shushckevich AM; Sklyanchuk ED; Kuzmicheva GM; Bespalova AE; Akulina EA; Shaitan KV; Okhlov AA
    Biomed Khim; 2014; 60(5):553-60. PubMed ID: 25386884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterization of coaxially electrospun gelatin coated poly (3-hydroxybutyric acid) thin films as potential scaffolds for skin regeneration.
    Nagiah N; Madhavi L; Anitha R; Anandan C; Srinivasan NT; Sivagnanam UT
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4444-52. PubMed ID: 23910364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting.
    Kempf M; Miyamura Y; Liu PY; Chen AC; Nakamura H; Shimizu H; Tabata Y; Kimble RM; McMillan JR
    Biomaterials; 2011 Jul; 32(21):4782-92. PubMed ID: 21477857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium alginate-based composites as a collagen substitute for skin bioengineering.
    Solovieva EV; Teterina AY; Klein OI; Komlev VS; Alekseev AA; Panteleyev AA
    Biomed Mater; 2020 Nov; 16(1):015002. PubMed ID: 33245048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel strategy to engineer pre-vascularized 3-dimensional skin substitutes to achieve efficient, functional engraftment.
    Miyazaki H; Tsunoi Y; Akagi T; Sato S; Akashi M; Saitoh D
    Sci Rep; 2019 May; 9(1):7797. PubMed ID: 31127144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite.
    Degli Esposti M; Chiellini F; Bondioli F; Morselli D; Fabbri P
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():286-296. PubMed ID: 30948063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the osteogenic potential and vascularization of 3D poly(3)hydroxybutyrate scaffolds subcutaneously implanted in nude rats.
    Rentsch C; Rentsch B; Breier A; Hofmann A; Manthey S; Scharnweber D; Biewener A; Zwipp H
    J Biomed Mater Res A; 2010 Jan; 92(1):185-95. PubMed ID: 19170159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration.
    Wang Z; Cui Y; Wang J; Yang X; Wu Y; Wang K; Gao X; Li D; Li Y; Zheng XL; Zhu Y; Kong D; Zhao Q
    Biomaterials; 2014 Jul; 35(22):5700-10. PubMed ID: 24746961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bio-inspired hybrid nanosack for graft vascularization at the omentum.
    Hwang PT; Lim DJ; Fee T; Alexander GC; Tambralli A; Andukuri A; Tian L; Cui W; Berry J; Gilbert SR; Jun HW
    Acta Biomater; 2016 Sep; 41():224-34. PubMed ID: 27286678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and characterization of a PHB-HV-based 3D scaffold for a tissue engineering and cell-therapy combinatorial approach for spinal cord injury regeneration.
    Ribeiro-Samy S; Silva NA; Correlo VM; Fraga JS; Pinto L; Teixeira-Castro A; Leite-Almeida H; Almeida A; Gimble JM; Sousa N; Salgado AJ; Reis RL
    Macromol Biosci; 2013 Nov; 13(11):1576-92. PubMed ID: 24038969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds.
    Spiller KL; Nassiri S; Witherel CE; Anfang RR; Ng J; Nakazawa KR; Yu T; Vunjak-Novakovic G
    Biomaterials; 2015 Jan; 37():194-207. PubMed ID: 25453950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone.
    Li T; Peng M; Yang Z; Zhou X; Deng Y; Jiang C; Xiao M; Wang J
    Acta Biomater; 2018 Apr; 71():96-107. PubMed ID: 29549051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.