BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28112389)

  • 1. Kinetic insights into ϵ-caprolactone synthesis: Improvement of an enzymatic cascade reaction.
    Scherkus C; Schmidt S; Bornscheuer UT; Gröger H; Kara S; Liese A
    Biotechnol Bioeng; 2017 Jun; 114(6):1215-1221. PubMed ID: 28112389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-enzyme cascade reaction for the production of 6-hydroxyhexanoic acid.
    Srinivasamurthy VST; Böttcher D; Bornscheuer UT
    Z Naturforsch C J Biosci; 2019 Feb; 74(3-4):71-76. PubMed ID: 30685749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled reactions by coupled enzymes: alcohol to lactone cascade with alcohol dehydrogenase-cyclohexanone monooxygenase fusions.
    Aalbers FS; Fraaije MW
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7557-7565. PubMed ID: 28916997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermediate product control in cascade reaction for one-pot production of ε-caprolactone by Escherichia coli.
    Chen H; Liu R; Cai S; Zhang Y; Zhu C; Yu H; Li S
    Biotechnol J; 2024 Feb; 19(2):e2300210. PubMed ID: 38403458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme cascade converting cyclohexanol into ε-caprolactone coupled with NADPH recycling using surface displayed alcohol dehydrogenase and cyclohexanone monooxygenase on E. coli.
    Tian H; Furtmann C; Lenz F; Srinivasamurthy V; Bornscheuer UT; Jose J
    Microb Biotechnol; 2022 Aug; 15(8):2235-2249. PubMed ID: 35478318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced production of epsilon-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene.
    Lee WH; Park JB; Park K; Kim MD; Seo JH
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):329-38. PubMed ID: 17541782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A self-sufficient Baeyer-Villiger biocatalysis system for the synthesis of ɛ-caprolactone from cyclohexanol.
    Mallin H; Wulf H; Bornscheuer UT
    Enzyme Microb Technol; 2013 Sep; 53(4):283-7. PubMed ID: 23931695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-expression of an alcohol dehydrogenase and a cyclohexanone monooxygenase for cascade reactions facilitates the regeneration of the NADPH cofactor.
    Kohl A; Srinivasamurthy V; Böttcher D; Kabisch J; Bornscheuer UT
    Enzyme Microb Technol; 2018 Jan; 108():53-58. PubMed ID: 29108627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone.
    Staudt S; Bornscheuer UT; Menyes U; Hummel W; Gröger H
    Enzyme Microb Technol; 2013 Sep; 53(4):288-92. PubMed ID: 23931696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactone-bound structures of cyclohexanone monooxygenase provide insight into the stereochemistry of catalysis.
    Yachnin BJ; McEvoy MB; MacCuish RJ; Morley KL; Lau PC; Berghuis AM
    ACS Chem Biol; 2014 Dec; 9(12):2843-51. PubMed ID: 25265531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An enzyme cascade synthesis of ε-caprolactone and its oligomers.
    Schmidt S; Scherkus C; Muschiol J; Menyes U; Winkler T; Hummel W; Gröger H; Liese A; Herz HG; Bornscheuer UT
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2784-7. PubMed ID: 25597635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-pot lipase-catalyzed esterification of ε-caprolactone with methyl-d-glucopyranoside and its elongation with free 6-hydroxyhexanoate monomer units.
    Saat MN; Mohamad Annuar MS
    Biotechnol Appl Biochem; 2020 May; 67(3):354-365. PubMed ID: 31746015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocatalytic conversion of cycloalkanes to lactones using an in-vivo cascade in Pseudomonas taiwanensis VLB120.
    Karande R; Salamanca D; Schmid A; Buehler K
    Biotechnol Bioeng; 2018 Feb; 115(2):312-320. PubMed ID: 28986995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Developments and Optimization of Lipase-Catalyzed Lactone Formation and Ring-Opening Polymerization.
    Champagne E; Strandman S; Zhu XX
    Macromol Rapid Commun; 2016 Dec; 37(24):1986-2004. PubMed ID: 27805747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cascade Synthesis from Cyclohexane to ϵ-Caprolactone by Visible-Light-Driven Photocatalysis Combined with Whole-Cell Biological Oxidation.
    Li P; Ma Y; Li Y; Zhang X; Wang Y
    Chembiochem; 2020 Jul; 21(13):1852-1855. PubMed ID: 32017323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning a bi-enzymatic cascade reaction in Escherichia coli to facilitate NADPH regeneration for ε-caprolactone production.
    Xiong J; Chen H; Liu R; Yu H; Zhuo M; Zhou T; Li S
    Bioresour Bioprocess; 2021 Apr; 8(1):32. PubMed ID: 38650214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic limitations in the synthesis of polyesters by lipase-catalyzed ring-opening polymerization.
    Panova AA; Kaplan DL
    Biotechnol Bioeng; 2003 Oct; 84(1):103-13. PubMed ID: 12910549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc undecylenate catalyst for the ring-opening polymerization of caprolactone monomers.
    Hao J; Granowski PC; Stefan MC
    Macromol Rapid Commun; 2012 Aug; 33(15):1294-9. PubMed ID: 22605568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of isolated cyclohexanone monooxygenase from recombinant Escherichia coli as a biocatalyst for Baeyer-Villiger and sulfide oxidations.
    Zambianchi F; Pasta P; Carrea G; Colonna S; Gaggero N; Woodley JM
    Biotechnol Bioeng; 2002 Jun; 78(5):489-96. PubMed ID: 12115117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The metabolism of cyclohexanol by Nocardia globerula CL1.
    Norris DB; Trudgill PW
    Biochem J; 1971 Feb; 121(3):363-70. PubMed ID: 5119767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.