BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28112478)

  • 1. Real-Time Monitoring of Nanoparticle Formation by FRET Imaging.
    Sanchez-Gaytan BL; Fay F; Hak S; Alaarg A; Fayad ZA; Pérez-Medina C; Mulder WJ; Zhao Y
    Angew Chem Int Ed Engl; 2017 Mar; 56(11):2923-2926. PubMed ID: 28112478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FRET Ratiometric Nanoprobes for Nanoparticle Monitoring.
    Yang G; Liu Y; Teng J; Zhao CX
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DOX Loaded Aggregation-induced Emission Active Polymeric Nanoparticles as a Fluorescence Resonance Energy Transfer Traceable Drug Delivery System for Self-indicating Cancer Therapy.
    Wang C; Wang Z; Zhao X; Yu F; Quan Y; Cheng Y; Yuan H
    Acta Biomater; 2019 Feb; 85():218-228. PubMed ID: 30557697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. J-Aggregate-Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading.
    Liu Y; Yang G; Jin S; Zhang R; Chen P; Tengjisi ; Wang L; Chen D; Weitz DA; Zhao CX
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):20065-20074. PubMed ID: 32743867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Dye-Loaded and Thin-Shell Fluorescent Polymeric Nanoparticles for Enhanced FRET Imaging of Protein-Specific Sialylation on the Cell Surface.
    Zhao T; Masuda T; Miyoshi E; Takai M
    Anal Chem; 2020 Oct; 92(19):13271-13280. PubMed ID: 32900193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET-enabled monitoring of the thermosensitive nanoscale assembly of polymeric micelles into macroscale hydrogel and sequential cognate micelles release.
    Huang P; Song H; Zhang Y; Liu J; Cheng Z; Liang XJ; Wang W; Kong D; Liu J
    Biomaterials; 2017 Nov; 145():81-91. PubMed ID: 28858720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching off FRET in the hybrid assemblies of diblock copolymer micelles, quantum dots, and dyes by plasmonic nanoparticles.
    Kim KS; Kim JH; Kim H; Laquai F; Arifin E; Lee JK; Yoo SI; Sohn BH
    ACS Nano; 2012 Jun; 6(6):5051-9. PubMed ID: 22621410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in nanoparticle-based Förster resonance energy transfer for biosensing, molecular imaging and drug release profiling.
    Chen NT; Cheng SH; Liu CP; Souris JS; Chen CT; Mou CY; Lo LW
    Int J Mol Sci; 2012 Dec; 13(12):16598-623. PubMed ID: 23443121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing lipid coating dynamics of quantum dot core micelles via Förster resonance energy transfer.
    Zhao Y; Schapotschnikow P; Skajaa T; Vlugt TJ; Mulder WJ; de Mello Donegá C; Meijerink A
    Small; 2014 Mar; 10(6):1163-70. PubMed ID: 24343988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum dot and Cy5.5 labeled nanoparticles to investigate lipoprotein biointeractions via Förster resonance energy transfer.
    Skajaa T; Zhao Y; van den Heuvel DJ; Gerritsen HC; Cormode DP; Koole R; van Schooneveld MM; Post JA; Fisher EA; Fayad ZA; de Mello Donega C; Meijerink A; Mulder WJ
    Nano Lett; 2010 Dec; 10(12):5131-8. PubMed ID: 21087054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer-Tethered Nanoparticles: From Surface Engineering to Directional Self-Assembly.
    Zhang NN; Shen X; Liu K; Nie Z; Kumacheva E
    Acc Chem Res; 2022 Jun; 55(11):1503-1513. PubMed ID: 35576169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sub-20 nm Core-Shell-Shell Nanoparticles for Bright Upconversion and Enhanced Förster Resonant Energy Transfer.
    Siefe C; Mehlenbacher RD; Peng CS; Zhang Y; Fischer S; Lay A; McLellan CA; Alivisatos AP; Chu S; Dionne JA
    J Am Chem Soc; 2019 Oct; 141(42):16997-17005. PubMed ID: 31592655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Förster Resonance Energy Transfer Switchable Self-Assembled Micellar Nanoprobe: Ratiometric Fluorescent Trapping of Endogenous H2S Generation via Fluvastatin-Stimulated Upregulation.
    Zhao C; Zhang X; Li K; Zhu S; Guo Z; Zhang L; Wang F; Fei Q; Luo S; Shi P; Tian H; Zhu WH
    J Am Chem Soc; 2015 Jul; 137(26):8490-8. PubMed ID: 26070091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale Live Imaging Using Förster Resonance Energy Transfer (FRET) for Evaluating the Biological Behavior of Nanoparticles as Drug Carriers.
    Ishizawa K; Togami K; Tada H; Chono S
    J Pharm Sci; 2020 Dec; 109(12):3608-3616. PubMed ID: 32926888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial neural network modelling hydrodenticity for optimal design by microfluidics of polymer nanoparticles to apply in magnetic resonance imaging.
    Smeraldo A; Ponsiglione AM; Netti PA; Torino E
    Acta Biomater; 2023 Nov; 171():440-450. PubMed ID: 37775077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Forster resonance energy transfer imaging.
    Chen H; Kim S; Li L; Wang S; Park K; Cheng JX
    Proc Natl Acad Sci U S A; 2008 May; 105(18):6596-601. PubMed ID: 18445654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nanoparticle dimensionality on fluorescence resonance energy transfer in nanoparticle-dye conjugated systems.
    Halivni S; Sitt A; Hadar I; Banin U
    ACS Nano; 2012 Mar; 6(3):2758-65. PubMed ID: 22314148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multicompartment Theranostic Nanoemulsions Stabilized by a Triphilic Semifluorinated Block Copolymer.
    Barres AR; Wimmer MR; Mecozzi S
    Mol Pharm; 2017 Nov; 14(11):3916-3926. PubMed ID: 28945386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the self-assembly structure of magnetic nanoparticles and amphiphilic block-copolymers: from micelles to vesicles.
    Hickey RJ; Haynes AS; Kikkawa JM; Park SJ
    J Am Chem Soc; 2011 Feb; 133(5):1517-25. PubMed ID: 21208004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent Probes with Förster Resonance Energy Transfer Function for Monitoring the Gelation and Formation of Nanoparticles Based on Chitosan Copolymers.
    Zlotnikov ID; Savchenko IV; Kudryashova EV
    J Funct Biomater; 2023 Jul; 14(8):. PubMed ID: 37623646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.