BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28112574)

  • 1. Relaxing the formation of hypoxic bottom water with sediment microbial fuel cells.
    Touch N; Hibino T; Morimoto Y; Kinjo N
    Environ Technol; 2017 Dec; 38(23):3016-3025. PubMed ID: 28112574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of overlying water aeration system powered by sediment-microbial-fuel-cell for nutrient suppression.
    Matsuki M; Hirakawa S
    Water Sci Technol; 2023 May; 87(10):2553-2563. PubMed ID: 37257109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the power performance of sediment microbial fuel cells by novel strategies: Overlying water flow and hydraulic-driven cathode rotating.
    Guo F; Shi Z; Yang K; Wu Y; Liu H
    Sci Total Environ; 2019 Aug; 678():533-542. PubMed ID: 31078843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internal nitrogen removal from sediments by the hybrid system of microbial fuel cells and submerged aquatic plants.
    Xu P; Xiao ER; Xu D; Zhou Y; He F; Liu BY; Zeng L; Wu ZB
    PLoS One; 2017; 12(2):e0172757. PubMed ID: 28241072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell.
    Sajana TK; Ghangrekar MM; Mitra A
    Bioresour Technol; 2014 Mar; 155():84-90. PubMed ID: 24434698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Migration of various ions based on pH shifts triggered by the application of sediment microbial fuel cells.
    Matsuki M; Hirakawa S
    Water Sci Technol; 2024 May; 89(9):2429-2439. PubMed ID: 38747958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microorganisms in sediment microbial fuel cells: Ecological niche, microbial response, and environmental function.
    Yang X; Chen S
    Sci Total Environ; 2021 Feb; 756():144145. PubMed ID: 33303196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced phosphorus flux from overlying water to sediment in a bioelectrochemical system.
    Yang Q; Zhao H; Zhao N; Ni J; Gu X
    Bioresour Technol; 2016 Sep; 216():182-7. PubMed ID: 27240233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased Power in Sediment Microbial Fuel Cell: Facilitated Mass Transfer via a Water-Layer Anode Embedded in Sediment.
    Lee YS; An J; Kim B; Park H; Kim J; Chang IS
    PLoS One; 2015; 10(12):e0145430. PubMed ID: 26714176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of sediment microbial communities to crude oil contamination in marine sediment microbial fuel cells under ferric iron stimulation.
    Hamdan HZ; Salam DA
    Environ Pollut; 2020 Aug; 263(Pt A):114658. PubMed ID: 33618484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of interface material and effects of oxygen gradient on the performance of single-chamber sediment microbial fuel cells (SSMFCs).
    Wang CT; Sangeetha T; Yan WM; Chong WT; Saw LH; Zhao F; Chang CT; Wang CH
    J Environ Sci (China); 2019 Jan; 75():163-168. PubMed ID: 30473281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel method to immobilize phosphate in lakes using sediment microbial fuel cells.
    Haxthausen KAV; Lu X; Zhang Y; Gosewinkel U; Petersen DG; Marzocchi U; Brock AL; Trapp S
    Water Res; 2021 Jun; 198():117108. PubMed ID: 33901841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs).
    Sherafatmand M; Ng HY
    Bioresour Technol; 2015 Nov; 195():122-30. PubMed ID: 26081161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced phosphorus reduction in simulated eutrophic water: a comparative study of submerged macrophytes, sediment microbial fuel cells, and their combination.
    Xu P; Xiao E; Xu D; Li J; Zhang Y; Dai Z; Zhou Q; Wu Z
    Environ Technol; 2018 May; 39(9):1144-1157. PubMed ID: 28443365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realignment of phosphorus in lake sediment induced by sediment microbial fuel cells (SMFC).
    Wang X; Zhi Y; Chen Y; Shen N; Wang G; Yan Y
    Chemosphere; 2022 Mar; 291(Pt 3):132927. PubMed ID: 34793847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Outlook for benefits of sediment microbial fuel cells with two bio-electrodes.
    De Schamphelaire L; Rabaey K; Boeckx P; Boon N; Verstraete W
    Microb Biotechnol; 2008 Nov; 1(6):446-62. PubMed ID: 21261866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electricity generation through a photo sediment microbial fuel cell using algae at the cathode.
    Neethu B; Ghangrekar MM
    Water Sci Technol; 2017 Dec; 76(11-12):3269-3277. PubMed ID: 29236006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turnover of lake sediments treated with sediment microbial fuel cells: a long-term study in a eutrophic lake.
    Lu X; von Haxthausen KA; Brock AL; Trapp S
    Sci Total Environ; 2021 Nov; 796():148880. PubMed ID: 34271375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of carbon source on electricity generation and PAH removal in aquaculture sediment microbial fuel cells.
    Zhang H; Chao B; Wang H; Li X
    Environ Technol; 2022 Nov; 43(26):4066-4077. PubMed ID: 34129447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of phosphorus release from eutrophic lake sediments by sediment microbial fuel cells.
    Takemura Y; Syutsubo K; Kubota K
    Environ Technol; 2022 Jul; 43(17):2581-2589. PubMed ID: 33576727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.