These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 28112833)

  • 1. New Opportunities and Challenges of Smart Polymers in Post-Translational Modification Proteomics.
    Qing G; Lu Q; Xiong Y; Zhang L; Wang H; Li X; Liang X; Sun T
    Adv Mater; 2017 May; 29(20):. PubMed ID: 28112833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Advances in enrichment of phosphorylated peptides and glycopeptides by smart polymer-based materials].
    Zheng X; Wang X; Zhang F; Zhang X; Zhao Y; Qing G
    Se Pu; 2021 Jan; 39(1):15-25. PubMed ID: 34227355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fishing the PTM proteome with chemical approaches using functional solid phases.
    Zhang Y; Zhang C; Jiang H; Yang P; Lu H
    Chem Soc Rev; 2015 Nov; 44(22):8260-87. PubMed ID: 26258179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment and separation techniques for large-scale proteomics analysis of the protein post-translational modifications.
    Huang J; Wang F; Ye M; Zou H
    J Chromatogr A; 2014 Dec; 1372C():1-17. PubMed ID: 25465002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques.
    Zhao Y; Jensen ON
    Proteomics; 2009 Oct; 9(20):4632-41. PubMed ID: 19743430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in enrichment methods for mass spectrometry-based proteomics analysis of post-translational modifications.
    Brandi J; Noberini R; Bonaldi T; Cecconi D
    J Chromatogr A; 2022 Aug; 1678():463352. PubMed ID: 35896048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive protocol to simultaneously study protein phosphorylation, acetylation, and N-linked sialylated glycosylation.
    Melo-Braga MN; Ibáñez-Vea M; Larsen MR; Kulej K
    Methods Mol Biol; 2015; 1295():275-92. PubMed ID: 25820729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification, Quantification, and Site Localization of Protein Posttranslational Modifications via Mass Spectrometry-Based Proteomics.
    Ke M; Shen H; Wang L; Luo S; Lin L; Yang J; Tian R
    Adv Exp Med Biol; 2016; 919():345-382. PubMed ID: 27975226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis tools for post-translational modification: a post-translational modification database for analysis of proteins and metabolic pathways.
    Cruz ER; Nguyen H; Nguyen T; Wallace IS
    Plant J; 2019 Sep; 99(5):1003-1013. PubMed ID: 31034103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in purification and separation of posttranslationally modified proteins.
    Černý M; Skalák J; Cerna H; Brzobohatý B
    J Proteomics; 2013 Oct; 92():2-27. PubMed ID: 23777897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Global Post-translational Modification Discovery with MetaMorpheus.
    Solntsev SK; Shortreed MR; Frey BL; Smith LM
    J Proteome Res; 2018 May; 17(5):1844-1851. PubMed ID: 29578715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding Post-Translational Modification Crosstalk With Proteomics.
    Leutert M; Entwisle SW; Villén J
    Mol Cell Proteomics; 2021; 20():100129. PubMed ID: 34339852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Efficiency Phosphopeptide and Glycopeptide Simultaneous Enrichment by Hydrogen Bond-based Bifunctional Smart Polymer.
    Lu Q; Chen C; Xiong Y; Li G; Zhang X; Zhang Y; Wang D; Zhu Z; Li X; Qing G; Sun T; Liang X
    Anal Chem; 2020 May; 92(9):6269-6277. PubMed ID: 32233396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase.
    Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ
    J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Software eyes for protein post-translational modifications.
    Na S; Paek E
    Mass Spectrom Rev; 2015; 34(2):133-47. PubMed ID: 24889695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. dbPTM in 2019: exploring disease association and cross-talk of post-translational modifications.
    Huang KY; Lee TY; Kao HJ; Ma CT; Lee CC; Lin TH; Chang WC; Huang HD
    Nucleic Acids Res; 2019 Jan; 47(D1):D298-D308. PubMed ID: 30418626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The next level of complexity: crosstalk of posttranslational modifications.
    Venne AS; Kollipara L; Zahedi RP
    Proteomics; 2014 Mar; 14(4-5):513-24. PubMed ID: 24339426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics of post-translational modifications in colorectal cancer: Discovery of new biomarkers.
    Zhu G; Jin L; Sun W; Wang S; Liu N
    Biochim Biophys Acta Rev Cancer; 2022 Jul; 1877(4):188735. PubMed ID: 35577141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Plant PTM Viewer, a central resource for exploring plant protein modifications.
    Willems P; Horne A; Van Parys T; Goormachtig S; De Smet I; Botzki A; Van Breusegem F; Gevaert K
    Plant J; 2019 Aug; 99(4):752-762. PubMed ID: 31004550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry.
    Jensen ON
    Curr Opin Chem Biol; 2004 Feb; 8(1):33-41. PubMed ID: 15036154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.