BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28112934)

  • 1. Divide-and-Conquer-Type Density-Functional Tight-Binding Simulations of Hydroxide Ion Diffusion in Bulk Water.
    Sakti AW; Nishimura Y; Nakai H
    J Phys Chem B; 2017 Feb; 121(6):1362-1371. PubMed ID: 28112934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divide-and-Conquer-Type Density-Functional Tight-Binding Molecular Dynamics Simulations of Proton Diffusion in a Bulk Water System.
    Nakai H; Sakti AW; Nishimura Y
    J Phys Chem B; 2016 Jan; 120(1):217-21. PubMed ID: 26694784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Divide-and-Conquer Density-Functional Tight-Binding Method for Theoretical Research on Li-Ion Battery.
    Chou CP; Sakti AW; Nishimura Y; Nakai H
    Chem Rec; 2019 Apr; 19(4):746-757. PubMed ID: 30462370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation.
    Nishizawa H; Nishimura Y; Kobayashi M; Irle S; Nakai H
    J Comput Chem; 2016 Aug; 37(21):1983-92. PubMed ID: 27317328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions.
    Choi TH; Liang R; Maupin CM; Voth GA
    J Phys Chem B; 2013 May; 117(17):5165-79. PubMed ID: 23566052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dcdftbmd: Divide-and-Conquer Density Functional Tight-Binding Program for Huge-System Quantum Mechanical Molecular Dynamics Simulations.
    Nishimura Y; Nakai H
    J Comput Chem; 2019 Jun; 40(15):1538-1549. PubMed ID: 30828839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical parallelization of divide-and-conquer density functional tight-binding molecular dynamics and metadynamics simulations.
    Nishimura Y; Nakai H
    J Comput Chem; 2020 Jul; 41(19):1759-1772. PubMed ID: 32358918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Scale Quantum-Mechanical Molecular Dynamics Simulations Using Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method.
    Nishimoto Y; Nakata H; Fedorov DG; Irle S
    J Phys Chem Lett; 2015 Dec; 6(24):5034-9. PubMed ID: 26623658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density-Functional Tight-Binding Molecular Dynamics Simulations of Excess Proton Diffusion in Ice I
    Sakti AW; Nishimura Y; Chou CP; Nakai H
    J Phys Chem A; 2018 Jan; 122(1):33-40. PubMed ID: 29227657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-adiabatic molecular dynamics with divide-and-conquer type large-scale excited-state calculations.
    Uratani H; Nakai H
    J Chem Phys; 2020 Jun; 152(22):224109. PubMed ID: 32534554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Large-Scale Excited-State Calculations Based on the Divide-and-Conquer Time-Dependent Density Functional Tight-Binding Method.
    Komoto N; Yoshikawa T; Ono J; Nishimura Y; Nakai H
    J Chem Theory Comput; 2019 Mar; 15(3):1719-1727. PubMed ID: 30673283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional tight binding-based free energy simulations in the DFTB+ program.
    Mitchell I; Aradi B; Page AJ
    J Comput Chem; 2018 Nov; 39(29):2452-2458. PubMed ID: 30238475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards hybrid quantum mechanical/molecular mechanical simulations of Li and Na intercalation in graphite - force field development and DFTB parametrisation.
    Purtscher FRS; Hofer TS
    Phys Chem Chem Phys; 2024 Jan; 26(3):1729-1740. PubMed ID: 38165417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate SCC-DFTB Parametrization of Liquid Water with Improved Atomic Charges and Iterative Boltzmann Inversion.
    Cinq N; Simon A; Louisnard F; Cuny J
    J Phys Chem B; 2023 Sep; 127(35):7590-7601. PubMed ID: 37603798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-Scale Molecular Dynamics Simulation for Ground and Excited States Based on Divide-and-Conquer Long-Range Corrected Density-Functional Tight-Binding Method.
    Komoto N; Yoshikawa T; Nishimura Y; Nakai H
    J Chem Theory Comput; 2020 Apr; 16(4):2369-2378. PubMed ID: 32074445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate SCC-DFTB Parametrization for Bulk Water.
    Lourenço MP; Dos Santos EC; Pettersson LGM; Duarte HA
    J Chem Theory Comput; 2020 Mar; 16(3):1768-1778. PubMed ID: 32040315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GPU-Accelerated Large-Scale Excited-State Simulation Based on Divide-and-Conquer Time-Dependent Density-Functional Tight-Binding.
    Yoshikawa T; Komoto N; Nishimura Y; Nakai H
    J Comput Chem; 2019 Dec; 40(31):2778-2786. PubMed ID: 31441083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recursive Factorization of the Inverse Overlap Matrix in Linear-Scaling Quantum Molecular Dynamics Simulations.
    Negre CF; Mniszewski SM; Cawkwell MJ; Bock N; Wall ME; Niklasson AM
    J Chem Theory Comput; 2016 Jul; 12(7):3063-73. PubMed ID: 27267207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of triflic acid and triflate ion/water mixtures: a proton conducting electrolytic component in fuel cells.
    Sunda AP; Venkatnathan A
    J Comput Chem; 2011 Nov; 32(15):3319-28. PubMed ID: 21953565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.