These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28113178)

  • 1. Self-Powered Forward Error-Correcting Biosensor Based on Integration of Paper-Based Microfluidics and Self-Assembled Quick Response Codes.
    Yuan M; Liu KK; Singamaneni S; Chakrabartty S
    IEEE Trans Biomed Circuits Syst; 2016 Oct; 10(5):963-971. PubMed ID: 28113178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Powered Wireless Affinity-Based Biosensor Based on Integration of Paper-Based Microfluidics and Self-Assembled RFID Antennas.
    Yuan M; Alocilja EC; Chakrabartty S
    IEEE Trans Biomed Circuits Syst; 2016 Aug; 10(4):799-806. PubMed ID: 27214914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards an Integrated QR Code Biosensor: Light-Driven Sample Acquisition and Bacterial Cellulose Paper Substrate.
    Yuan M; Jiang Q; Liu KK; Singamaneni S; Chakrabartty S
    IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):452-460. PubMed ID: 29877810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paper-based chemical and biological sensors: Engineering aspects.
    Ahmed S; Bui MP; Abbas A
    Biosens Bioelectron; 2016 Mar; 77():249-63. PubMed ID: 26410389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Handheld analyzer with on-chip molecularly-imprinted biosensors for electrical detection of propofol in plasma samples.
    Hong CC; Lin CC; Hong CL; Lin ZX; Chung MH; Hsieh PW
    Biosens Bioelectron; 2016 Dec; 86():623-629. PubMed ID: 27471152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review.
    Xia Y; Si J; Li Z
    Biosens Bioelectron; 2016 Mar; 77():774-89. PubMed ID: 26513284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of biosensors into digital microfluidics: Impact of hydrophilic surface of biosensors on droplet manipulation.
    Samiei E; Luka GS; Najjaran H; Hoorfar M
    Biosens Bioelectron; 2016 Jul; 81():480-486. PubMed ID: 27016626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multi-Technique Reconfigurable Electrochemical Biosensor: Enabling Personal Health Monitoring in Mobile Devices.
    Sun A; Venkatesh AG; Hall DA
    IEEE Trans Biomed Circuits Syst; 2016 Oct; 10(5):945-954. PubMed ID: 28113176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured digital microfluidics for enhanced surface plasmon resonance imaging.
    Malic L; Veres T; Tabrizian M
    Biosens Bioelectron; 2011 Jan; 26(5):2053-9. PubMed ID: 20926281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel, disposable, screen-printed amperometric biosensor for glucose in serum fabricated using a water-based carbon ink.
    Crouch E; Cowell DC; Hoskins S; Pittson RW; Hart JP
    Biosens Bioelectron; 2005 Nov; 21(5):712-8. PubMed ID: 16242609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lectin binding studies on a glycopolymer brush flow-through biosensor by localized surface plasmon resonance.
    Rosencrantz RR; Nguyen VH; Park H; Schulte C; Böker A; Schnakenberg U; Elling L
    Anal Bioanal Chem; 2016 Aug; 408(20):5633-40. PubMed ID: 27277814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable low-cost fabrication of disposable paper sensors for DNA detection.
    Gandhiraman RP; Nordlund D; Jayan V; Meyyappan M; Koehne JE
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22751-60. PubMed ID: 25423585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-powered competitive immunosensor driven by biofuel cell based on hollow-channel paper analytical devices.
    Li S; Wang Y; Ge S; Yu J; Yan M
    Biosens Bioelectron; 2015 Sep; 71():18-24. PubMed ID: 25880834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paper microfluidics goes digital.
    Fobel R; Kirby AE; Ng AH; Farnood RR; Wheeler AR
    Adv Mater; 2014 May; 26(18):2838-43. PubMed ID: 24458780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical system design for biosensors based on CCD detection.
    Christensen DA; Herron JN
    Methods Mol Biol; 2009; 503():239-58. PubMed ID: 19151945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smartphone-based, sensitive µPAD detection of urinary tract infection and gonorrhea.
    Cho S; Park TS; Nahapetian TG; Yoon JY
    Biosens Bioelectron; 2015 Dec; 74():601-11. PubMed ID: 26190472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Power management design for lab-on-chip biosensors.
    Xiaojian Yu ; Moez K; I-Chyn Wey ; Jie Chen
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2986-2989. PubMed ID: 28268940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards autonomous lab-on-a-chip devices for cell phone biosensing.
    Comina G; Suska A; Filippini D
    Biosens Bioelectron; 2016 Mar; 77():1153-67. PubMed ID: 26569446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electrochemical-sensor system for real-time flow measurements in porous materials.
    Bathany C; Han JR; Abi-Samra K; Takayama S; Cho YK
    Biosens Bioelectron; 2015 Aug; 70():115-21. PubMed ID: 25797850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2,4,6-trinitrotoluene (TNT) detection.
    Zhang D; Jiang J; Chen J; Zhang Q; Lu Y; Yao Y; Li S; Logan Liu G; Liu Q
    Biosens Bioelectron; 2015 Aug; 70():81-8. PubMed ID: 25796040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.