These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 28113185)

  • 1. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review.
    Chen S; Lach J; Lo B; Yang GZ
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1521-1537. PubMed ID: 28113185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors.
    Khurelbaatar T; Kim K; Lee S; Kim YH
    Gait Posture; 2015 Jun; 42(1):65-9. PubMed ID: 25957652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of an Accelerometer to Quantify a Comprehensive Battery of Gait Characteristics in Healthy Older Adults and Parkinson's Disease: Toward Clinical and at Home Use.
    Del Din S; Godfrey A; Rochester L
    IEEE J Biomed Health Inform; 2016 May; 20(3):838-847. PubMed ID: 25850097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait and balance analysis for patients with Alzheimer's disease using an inertial-sensor-based wearable instrument.
    Hsu YL; Chung PC; Wang WH; Pai MC; Wang CY; Lin CW; Wu HL; Wang JS
    IEEE J Biomed Health Inform; 2014 Nov; 18(6):1822-30. PubMed ID: 25375679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Mobile Kalman-Filter Based Solution for the Real-Time Estimation of Spatio-Temporal Gait Parameters.
    Ferrari A; Ginis P; Hardegger M; Casamassima F; Rocchi L; Chiari L
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):764-73. PubMed ID: 26259246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait Partitioning Methods: A Systematic Review.
    Taborri J; Palermo E; Rossi S; Cappa P
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26751449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait analysis using wearable sensors.
    Tao W; Liu T; Zheng R; Feng H
    Sensors (Basel); 2012; 12(2):2255-83. PubMed ID: 22438763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Online tracking of the lower body joint angles using IMUs for gait rehabilitation.
    Joukov V; Karg M; Kulic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2310-3. PubMed ID: 25570450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait initiation is impaired in subjects with Parkinson's disease in the OFF state: Evidence from the analysis of the anticipatory postural adjustments through wearable inertial sensors.
    Bonora G; Mancini M; Carpinella I; Chiari L; Horak FB; Ferrarin M
    Gait Posture; 2017 Jan; 51():218-221. PubMed ID: 27816900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable inertial sensors for human movement analysis.
    Iosa M; Picerno P; Paolucci S; Morone G
    Expert Rev Med Devices; 2016 Jul; 13(7):641-59. PubMed ID: 27309490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention.
    Shull PB; Jirattigalachote W; Hunt MA; Cutkosky MR; Delp SL
    Gait Posture; 2014; 40(1):11-9. PubMed ID: 24768525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing a portable gait cycle detection system using an inertial sensor and evaluating the accuracy of the gait cycle detection.
    Park MH; Kwak KY; Kim DW
    Technol Health Care; 2015; 24 Suppl 1():S69-76. PubMed ID: 26409541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Validation of a Biofeedback Device to Improve Heel-to-Toe Gait in Seniors.
    Vadnerkar A; Figueiredo S; Mayo NE; Kearney RE
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):140-146. PubMed ID: 28186914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry.
    Sant'anna A; Wickström N
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1180-7. PubMed ID: 20371410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review on Accelerometry-Based Gait Analysis and Emerging Clinical Applications.
    Jarchi D; Pope J; Lee TKM; Tamjidi L; Mirzaei A; Sanei S
    IEEE Rev Biomed Eng; 2018; 11():177-194. PubMed ID: 29994786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-shoe wearable sensors for gait and turning assessment of patients with Parkinson's disease.
    Mariani B; Jiménez MC; Vingerhoets FJ; Aminian K
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):155-8. PubMed ID: 23268531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wearable assistant for Parkinson's disease patients with the freezing of gait symptom.
    Bächlin M; Plotnik M; Roggen D; Maidan I; Hausdorff JM; Giladi N; Tröster G
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):436-46. PubMed ID: 19906597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial Sensor-Based Gait Recognition: A Review.
    Sprager S; Juric MB
    Sensors (Basel); 2015 Sep; 15(9):22089-127. PubMed ID: 26340634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technological solution for determining gait parameters using pressure sensors: a case study of multiple sclerosis patients.
    Viqueira Villarejo M; Maeso García J; García Zapirain B; Méndez Zorrilla A
    Biomed Mater Eng; 2014; 24(6):3511-22. PubMed ID: 25227064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic detection, extraction and analysis of unrestrained gait using a wearable sensor system.
    Ahmadi A; Richter C; O'Connor NE; Moran K
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2034-7. PubMed ID: 26736686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.