These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 28113227)
1. A Theoretical Analysis of Electrogastrography (EGG) Signatures Associated With Gastric Dysrhythmias. Calder S; O'Grady G; Cheng LK; Peng Du IEEE Trans Biomed Eng; 2017 Jul; 64(7):1592-1601. PubMed ID: 28113227 [TBL] [Abstract][Full Text] [Related]
2. Anatomical variations of the stomach effects on electrogastrography. Calder S; O'Grady G; Cheng LK; Peng Du Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4219-4222. PubMed ID: 29060828 [TBL] [Abstract][Full Text] [Related]
3. A Simulated Anatomically Accurate Investigation Into the Effects of Biodiversity on Electrogastrography. Calder S; O'Grady G; Cheng LK; Du P IEEE Trans Biomed Eng; 2020 Mar; 67(3):868-875. PubMed ID: 31199250 [TBL] [Abstract][Full Text] [Related]
4. Torso-Tank Validation of High-Resolution Electrogastrography (EGG): Forward Modelling, Methodology and Results. Calder S; O'Grady G; Cheng LK; Du P Ann Biomed Eng; 2018 Aug; 46(8):1183-1193. PubMed ID: 29704187 [TBL] [Abstract][Full Text] [Related]
11. High-resolution mapping of gastric slow-wave recovery profiles: biophysical model, methodology, and demonstration of applications. Paskaranandavadivel N; Cheng LK; Du P; Rogers JM; O'Grady G Am J Physiol Gastrointest Liver Physiol; 2017 Sep; 313(3):G265-G276. PubMed ID: 28546283 [TBL] [Abstract][Full Text] [Related]
12. What can be measured from surface electrogastrography. Computer simulations. Liang J; Chen JD Dig Dis Sci; 1997 Jul; 42(7):1331-43. PubMed ID: 9246026 [TBL] [Abstract][Full Text] [Related]
13. Determining the efficient inter-electrode distance for high-resolution mapping using a mathematical model of human gastric dysrhythmias. Putney J; O'Grady G; Angeli TR; Paskaranandavadivel N; Cheng LK; Erickson JC; Peng Du Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1448-51. PubMed ID: 26736542 [TBL] [Abstract][Full Text] [Related]
14. Gastric myoelectrical activity in patients with gastric outlet obstruction and idiopathic gastroparesis. Brzana RJ; Koch KL; Bingaman S Am J Gastroenterol; 1998 Oct; 93(10):1803-9. PubMed ID: 9772035 [TBL] [Abstract][Full Text] [Related]
15. Current status of multichannel electrogastrography and examples of its use. Murakami H; Matsumoto H; Ueno D; Kawai A; Ensako T; Kaida Y; Abe T; Kubota H; Higashida M; Nakashima H; Oka Y; Okumura H; Tsuruta A; Nakamura M; Hirai T J Smooth Muscle Res; 2013; 49():78-88. PubMed ID: 24662473 [TBL] [Abstract][Full Text] [Related]
16. A multiscale model of the electrophysiological basis of the human electrogastrogram. Du P; O'Grady G; Cheng LK; Pullan AJ Biophys J; 2010 Nov; 99(9):2784-92. PubMed ID: 21044575 [TBL] [Abstract][Full Text] [Related]
17. Effects of pacing parameters on entrainment of gastric slow waves in patients with gastroparesis. Lin ZY; McCallum RW; Schirmer BD; Chen JD Am J Physiol; 1998 Jan; 274(1):G186-91. PubMed ID: 9458788 [TBL] [Abstract][Full Text] [Related]
18. Rhythmic and spatial abnormalities of gastric slow waves in patients with functional dyspepsia. Sha W; Pasricha PJ; Chen JD J Clin Gastroenterol; 2009 Feb; 43(2):123-9. PubMed ID: 18719512 [TBL] [Abstract][Full Text] [Related]
20. The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling. Du P; Hameed A; Angeli TR; Lahr C; Abell TL; Cheng LK; O'Grady G Neurogastroenterol Motil; 2015 Oct; 27(10):1409-22. PubMed ID: 26251163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]