These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 28113302)
1. Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection. Dou Q; Chen H; Yu L; Qin J; Heng PA IEEE Trans Biomed Eng; 2017 Jul; 64(7):1558-1567. PubMed ID: 28113302 [TBL] [Abstract][Full Text] [Related]
2. Single-view 2D CNNs with fully automatic non-nodule categorization for false positive reduction in pulmonary nodule detection. Eun H; Kim D; Jung C; Kim C Comput Methods Programs Biomed; 2018 Oct; 165():215-224. PubMed ID: 30337076 [TBL] [Abstract][Full Text] [Related]
3. Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection. Zheng S; Guo J; Cui X; Veldhuis RNJ; Oudkerk M; van Ooijen PMA IEEE Trans Med Imaging; 2020 Mar; 39(3):797-805. PubMed ID: 31425026 [TBL] [Abstract][Full Text] [Related]
4. Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs. Gu Y; Lu X; Yang L; Zhang B; Yu D; Zhao Y; Gao L; Wu L; Zhou T Comput Biol Med; 2018 Dec; 103():220-231. PubMed ID: 30390571 [TBL] [Abstract][Full Text] [Related]
5. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning. Huang W; Xue Y; Wu Y PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053 [TBL] [Abstract][Full Text] [Related]
6. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Setio AAA; Traverso A; de Bel T; Berens MSN; Bogaard CVD; Cerello P; Chen H; Dou Q; Fantacci ME; Geurts B; Gugten RV; Heng PA; Jansen B; de Kaste MMJ; Kotov V; Lin JY; Manders JTMC; Sóñora-Mengana A; García-Naranjo JC; Papavasileiou E; Prokop M; Saletta M; Schaefer-Prokop CM; Scholten ET; Scholten L; Snoeren MM; Torres EL; Vandemeulebroucke J; Walasek N; Zuidhof GCA; Ginneken BV; Jacobs C Med Image Anal; 2017 Dec; 42():1-13. PubMed ID: 28732268 [TBL] [Abstract][Full Text] [Related]
7. MR-Forest: A Deep Decision Framework for False Positive Reduction in Pulmonary Nodule Detection. Zhu H; Zhao H; Song C; Bian Z; Bi Y; Liu T; He X; Yang D; Cai W IEEE J Biomed Health Inform; 2020 Jun; 24(6):1652-1663. PubMed ID: 31634145 [TBL] [Abstract][Full Text] [Related]
8. A deep 3D residual CNN for false-positive reduction in pulmonary nodule detection. Jin H; Li Z; Tong R; Lin L Med Phys; 2018 May; 45(5):2097-2107. PubMed ID: 29500816 [TBL] [Abstract][Full Text] [Related]
9. MD-NDNet: a multi-dimensional convolutional neural network for false-positive reduction in pulmonary nodule detection. Wu Z; Ge R; Shi G; Zhang L; Chen Y; Luo L; Cao Y; Yu H Phys Med Biol; 2020 Dec; 65(23):235053. PubMed ID: 32698172 [TBL] [Abstract][Full Text] [Related]
10. Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks. Setio AA; Ciompi F; Litjens G; Gerke P; Jacobs C; van Riel SJ; Wille MM; Naqibullah M; Sanchez CI; van Ginneken B IEEE Trans Med Imaging; 2016 May; 35(5):1160-1169. PubMed ID: 26955024 [TBL] [Abstract][Full Text] [Related]
11. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Suzuki K; Armato SG; Li F; Sone S; Doi K Med Phys; 2003 Jul; 30(7):1602-17. PubMed ID: 12906178 [TBL] [Abstract][Full Text] [Related]
12. Pulmonary nodule detection in CT scans with equivariant CNNs. Winkels M; Cohen TS Med Image Anal; 2019 Jul; 55():15-26. PubMed ID: 31003034 [TBL] [Abstract][Full Text] [Related]
13. Pulmonary Nodule Classification with Deep Convolutional Neural Networks on Computed Tomography Images. Li W; Cao P; Zhao D; Wang J Comput Math Methods Med; 2016; 2016():6215085. PubMed ID: 28070212 [TBL] [Abstract][Full Text] [Related]
14. An efficient multi-path 3D convolutional neural network for false-positive reduction of pulmonary nodule detection. Yuan H; Fan Z; Wu Y; Cheng J Int J Comput Assist Radiol Surg; 2021 Dec; 16(12):2269-2277. PubMed ID: 34449037 [TBL] [Abstract][Full Text] [Related]
15. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Ciompi F; de Hoop B; van Riel SJ; Chung K; Scholten ET; Oudkerk M; de Jong PA; Prokop M; van Ginneken B Med Image Anal; 2015 Dec; 26(1):195-202. PubMed ID: 26458112 [TBL] [Abstract][Full Text] [Related]
16. Computer-aided detection of lung nodules: false positive reduction using a 3D gradient field method and 3D ellipsoid fitting. Ge Z; Sahiner B; Chan HP; Hadjiiski LM; Cascade PN; Bogot N; Kazerooni EA; Wei J; Zhou C Med Phys; 2005 Aug; 32(8):2443-54. PubMed ID: 16193773 [TBL] [Abstract][Full Text] [Related]
17. Automated pulmonary nodule detection in CT images using 3D deep squeeze-and-excitation networks. Gong L; Jiang S; Yang Z; Zhang G; Wang L Int J Comput Assist Radiol Surg; 2019 Nov; 14(11):1969-1979. PubMed ID: 31028657 [TBL] [Abstract][Full Text] [Related]
18. 3D shape analysis to reduce false positives for lung nodule detection systems. Filho AOC; Silva AC; de Paiva AC; Nunes RA; Gattass M Med Biol Eng Comput; 2017 Aug; 55(8):1199-1213. PubMed ID: 27752930 [TBL] [Abstract][Full Text] [Related]
19. Computer-aided detection of lung nodules using outer surface features. Demir Ö; Yılmaz Çamurcu A Biomed Mater Eng; 2015; 26 Suppl 1():S1213-22. PubMed ID: 26405880 [TBL] [Abstract][Full Text] [Related]
20. Recurrent attention network for false positive reduction in the detection of pulmonary nodules in thoracic CT scans. Farhangi MM; Petrick N; Sahiner B; Frigui H; Amini AA; Pezeshk A Med Phys; 2020 Jun; 47(5):2150-2160. PubMed ID: 32030769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]