BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28113304)

  • 1. A Deep Denoising Autoencoder Approach to Improving the Intelligibility of Vocoded Speech in Cochlear Implant Simulation.
    Lai YH; Chen F; Wang SS; Lu X; Tsao Y; Lee CH
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1568-1578. PubMed ID: 28113304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning-Based Noise Reduction Approach to Improve Speech Intelligibility for Cochlear Implant Recipients.
    Lai YH; Tsao Y; Lu X; Chen F; Su YT; Chen KC; Chen YH; Chen LC; Po-Hung Li L; Lee CH
    Ear Hear; 2018; 39(4):795-809. PubMed ID: 29360687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Environment-Aware-Based Noise Reduction System for Cochlear Implant Users Based on a Knowledge Transfer Approach: Development and Usability Study.
    Li LP; Han JY; Zheng WZ; Huang RJ; Lai YH
    J Med Internet Res; 2021 Oct; 23(10):e25460. PubMed ID: 34709193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a real time sparse non-negative matrix factorization module for cochlear implants by using xPC target.
    Hu H; Krasoulis A; Lutman M; Bleeck S
    Sensors (Basel); 2013 Oct; 13(10):13861-78. PubMed ID: 24129021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining directional microphone and single-channel noise reduction algorithms: a clinical evaluation in difficult listening conditions with cochlear implant users.
    Hersbach AA; Arora K; Mauger SJ; Dawson PW
    Ear Hear; 2012; 33(4):e13-23. PubMed ID: 22555182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the Intelligibility of Speech for Simulated Electric and Acoustic Stimulation Using Fully Convolutional Neural Networks.
    Wang NY; Wang HS; Wang TW; Fu SW; Lu X; Wang HM; Tsao Y
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():184-195. PubMed ID: 33275585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm.
    Fink N; Furst M; Muchnik C
    J Acoust Soc Am; 2012 Sep; 132(3):1718-31. PubMed ID: 22978899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of real-time loudness models can improve speech recognition for cochlear implant users.
    Varsavsky A; McDermott HJ
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):81-7. PubMed ID: 22961312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ideal time-frequency masking algorithms lead to different speech intelligibility and quality in normal-hearing and cochlear implant listeners.
    Koning R; Madhu N; Wouters J
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):331-41. PubMed ID: 25167542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Adaptation Rate and Noise Suppression on the Intelligibility of Compressed-Envelope Based Speech.
    Lai YH; Tsao Y; Chen F
    PLoS One; 2015; 10(7):e0133519. PubMed ID: 26196508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relative importance of temporal envelope information for intelligibility prediction: a study on cochlear-implant vocoded speech.
    Chen F
    Med Eng Phys; 2011 Oct; 33(8):1033-8. PubMed ID: 21546304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sparse Nonnegative Matrix Factorization Strategy for Cochlear Implants.
    Hu H; Lutman ME; Ewert SD; Li G; Bleeck S
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the effect of noise on electrical stimulation sequences in cochlear implants and its impact on speech intelligibility.
    Qazi OU; van Dijk B; Moonen M; Wouters J
    Hear Res; 2013 May; 299():79-87. PubMed ID: 23396271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benefits of Adaptive Signal Processing in a Commercially Available Cochlear Implant Sound Processor.
    Wolfe J; Neumann S; Marsh M; Schafer E; Lianos L; Gilden J; O'Neill L; Arkis P; Menapace C; Nel E; Jones M
    Otol Neurotol; 2015 Aug; 36(7):1181-90. PubMed ID: 26049314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speech understanding in background noise with the two-microphone adaptive beamformer BEAM in the Nucleus Freedom Cochlear Implant System.
    Spriet A; Van Deun L; Eftaxiadis K; Laneau J; Moonen M; van Dijk B; van Wieringen A; Wouters J
    Ear Hear; 2007 Feb; 28(1):62-72. PubMed ID: 17204899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Noise Reduction Algorithm ClearVoice in Cochlear Implant Processing: Effects on Noise Tolerance and Speech Intelligibility in Noise in Relation to Spectral Resolution.
    Dingemanse JG; Goedegebure A
    Ear Hear; 2015; 36(3):357-67. PubMed ID: 25479412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of noise reduction methods for sentence recognition by Mandarin-speaking cochlear implant listeners.
    Chen F; Hu Y; Yuan M
    Ear Hear; 2015 Jan; 36(1):61-71. PubMed ID: 25127321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential of onset enhancement for increased speech intelligibility in auditory prostheses.
    Koning R; Wouters J
    J Acoust Soc Am; 2012 Oct; 132(4):2569-81. PubMed ID: 23039450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase-based dual-microphone robust speech enhancement.
    Aarabi P; Shi G
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1763-73. PubMed ID: 15462443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speech Intelligibility in Noise With a Single-Unit Cochlear Implant Audio Processor.
    Wimmer W; Caversaccio M; Kompis M
    Otol Neurotol; 2015 Aug; 36(7):1197-202. PubMed ID: 25894727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.