These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28113322)

  • 1. Comparison of Constant-Posture Force-Varying EMG-Force Dynamic Models About the Elbow.
    Dai C; Bardizbanian B; Clancy EA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1529-1538. PubMed ID: 28113322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of joint angle on EMG-torque model during constant-posture, quasi-constant-torque contractions.
    Liu P; Liu L; Martel F; Rancourt D; Clancy EA
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1020-8. PubMed ID: 23932797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of constant-posture EMG-torque relationship about the elbow using nonlinear dynamic models.
    Clancy EA; Liu L; Liu P; Moyer DV
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):205-12. PubMed ID: 21968709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of elbow joint angle on force-EMG relationships in human elbow flexor and extensor muscles.
    Doheny EP; Lowery MM; Fitzpatrick DP; O'Malley MJ
    J Electromyogr Kinesiol; 2008 Oct; 18(5):760-70. PubMed ID: 17499516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of advanced electromyogram (EMG) amplitude processors on EMG-to-torque estimation during constant-posture, force-varying contractions.
    Clancy EA; Bida O; Rancourt D
    J Biomech; 2006; 39(14):2690-8. PubMed ID: 16243341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Joint Angle on EMG-Torque Model During Constant-Posture, Torque-Varying Contractions.
    Liu P; Liu L; Clancy EA
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1039-46. PubMed ID: 25706722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using the electromyogram to anticipate torques about the elbow.
    Koirala K; Dasog M; Liu P; Clancy EA
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):396-402. PubMed ID: 25014956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies used to stabilize the elbow joint challenged by inverted pendulum loading.
    Stokes IA; Gardner-Morse MG
    J Biomech; 2000 Jun; 33(6):737-43. PubMed ID: 10807995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EMG and MMG of synergists and antagonists during relaxation at three joint angles.
    Jaskólska A; Kisiel K; Brzenczek W; Jaskólski A
    Eur J Appl Physiol; 2003 Sep; 90(1-2):58-68. PubMed ID: 12811569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of innervation zones in estimating biceps brachii force-EMG relationship during isometric contraction.
    Rantalainen T; Kłodowski A; Piitulainen H
    J Electromyogr Kinesiol; 2012 Feb; 22(1):80-7. PubMed ID: 22019132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Elbow Flexion Force Estimation Through a Muscle Twitch Model and sEMG in a Fatigue Condition.
    Na Y; Kim J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1431-1439. PubMed ID: 28113944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating ultrasound-measured musculotendon parameters to subject-specific EMG-driven model to simulate voluntary elbow flexion for persons after stroke.
    Li L; Tong KY; Hu XL; Hung LK; Koo TK
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):101-9. PubMed ID: 19012998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relating agonist-antagonist electromyograms to joint torque during isometric, quasi-isotonic, nonfatiguing contractions.
    Clancy EA; Hogan N
    IEEE Trans Biomed Eng; 1997 Oct; 44(10):1024-8. PubMed ID: 9311171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of elbow-induced wrist force with EMG signals using fast orthogonal search.
    Mobasser F; Eklund JM; Hashtrudi-Zaad K
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):683-93. PubMed ID: 17405375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromyographic instantaneous amplitude and instantaneous mean power frequency patterns across a range of motion during a concentric isokinetic muscle action of the biceps brachii.
    Beck TW; Housh TJ; Johnson GO; Cramer JT; Weir JP; Coburn JW; Malek MH
    J Electromyogr Kinesiol; 2006 Oct; 16(5):531-9. PubMed ID: 16368246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of changes in load sharing during isometric elbow flexion with ramped torque.
    Bouillard K; Nordez A; Hodges PW; Cornu C; Hug F
    J Biomech; 2012 May; 45(8):1424-9. PubMed ID: 22406469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using recurrent artificial neural network model to estimate voluntary elbow torque in dynamic situations.
    Song R; Tong KY
    Med Biol Eng Comput; 2005 Jul; 43(4):473-80. PubMed ID: 16255429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Torque and EMG in rotation extension of the torso from pre-rotated and flexed postures.
    Kumar S; Narayan Y
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):920-31. PubMed ID: 16782246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of interelectrode distance on electromyographic amplitude and mean power frequency during isokinetic and isometric muscle actions of the biceps brachii.
    Beck TW; Housh TJ; Johnson GO; Weir JP; Cramer JT; Coburn JW; Malek MH
    J Electromyogr Kinesiol; 2005 Oct; 15(5):482-95. PubMed ID: 15935960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface EMG force modeling with joint angle based calibration.
    Hashemi J; Morin E; Mousavi P; Hashtrudi-Zaad K
    J Electromyogr Kinesiol; 2013 Apr; 23(2):416-24. PubMed ID: 23273763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.