These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 28113323)

  • 1. Brain-Machine Interface Control Algorithms.
    Shanechi MM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1725-1734. PubMed ID: 28113323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic optimal control as a theory of brain-machine interface operation.
    Lagang M; Srinivasan L
    Neural Comput; 2013 Feb; 25(2):374-417. PubMed ID: 23148413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Audio-induced medial prefrontal cortical dynamics enhances coadaptive learning in brain-machine interfaces.
    Tan J; Zhang X; Wu S; Song Z; Chen S; Huang Y; Wang Y
    J Neural Eng; 2023 Oct; 20(5):. PubMed ID: 37812934
    [No Abstract]   [Full Text] [Related]  

  • 4. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering.
    Shanechi MM; Orsborn AL; Carmena JM
    PLoS Comput Biol; 2016 Apr; 12(4):e1004730. PubMed ID: 27035820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed-loop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization conditions.
    Orsborn AL; Dangi S; Moorman HG; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):468-77. PubMed ID: 22772374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new full closed-loop brain-machine interface approach based on neural activity: A study based on modeling and experimental studies.
    Amiri M; Nazari S; Jafari AH; Makkiabadi B
    Heliyon; 2023 Mar; 9(3):e13766. PubMed ID: 36851970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-linear mapping algorithm shaping the control policy of a bidirectional brain machine interface.
    Boi F; Semprini M; Vato A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3052-3055. PubMed ID: 28268955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance brain-machine interface enabled by an adaptive optimal feedback-controlled point process decoder.
    Shanechi MM; Orsborn A; Moorman H; Gowda S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6493-6. PubMed ID: 25571483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feedback for reinforcement learning based brain-machine interfaces using confidence metrics.
    Prins NW; Sanchez JC; Prasad A
    J Neural Eng; 2017 Jun; 14(3):036016. PubMed ID: 28240598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning in closed-loop brain-machine interfaces: modeling and experimental validation.
    Héliot R; Ganguly K; Jimenez J; Carmena JM
    IEEE Trans Syst Man Cybern B Cybern; 2010 Oct; 40(5):1387-97. PubMed ID: 20007050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving brain-machine interface performance by decoding intended future movements.
    Willett FR; Suminski AJ; Fagg AH; Hatsopoulos NG
    J Neural Eng; 2013 Apr; 10(2):026011. PubMed ID: 23428966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high performing brain-machine interface driven by low-frequency local field potentials alone and together with spikes.
    Stavisky SD; Kao JC; Nuyujukian P; Ryu SI; Shenoy KV
    J Neural Eng; 2015 Jun; 12(3):036009. PubMed ID: 25946198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recasting brain-machine interface design from a physical control system perspective.
    Zhang Y; Chase SM
    J Comput Neurosci; 2015 Oct; 39(2):107-18. PubMed ID: 26142906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor cortical decoding performance depends on controlled system order.
    Matlack C; Haddock A; Moritz CT; Chizeck HJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2553-6. PubMed ID: 25570511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic optimal control of single neuron spike trains.
    Iolov A; Ditlevsen S; Longtin A
    J Neural Eng; 2014 Aug; 11(4):046004. PubMed ID: 24891497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale modeling and decoding algorithms for spike-field activity.
    Hsieh HL; Wong YT; Pesaran B; Shanechi MM
    J Neural Eng; 2019 Feb; 16(1):016018. PubMed ID: 30523833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic analysis of naive adaptive brain-machine interfaces.
    Kowalski KC; He BD; Srinivasan L
    Neural Comput; 2013 Sep; 25(9):2373-420. PubMed ID: 23777523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning Neural Encoders for Motor Cortex.
    Liang KF; Kao JC
    IEEE Trans Biomed Eng; 2020 Aug; 67(8):2145-2158. PubMed ID: 31765302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces.
    Dangi S; Orsborn AL; Moorman HG; Carmena JM
    Neural Comput; 2013 Jul; 25(7):1693-731. PubMed ID: 23607558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subject-specific modulation of local field potential spectral power during brain-machine interface control in primates.
    So K; Dangi S; Orsborn AL; Gastpar MC; Carmena JM
    J Neural Eng; 2014 Apr; 11(2):026002. PubMed ID: 24503623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.