These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 28113323)
21. Task Learning Over Multi-Day Recording via Internally Rewarded Reinforcement Learning Based Brain Machine Interfaces. Shen X; Zhang X; Huang Y; Chen S; Wang Y IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3089-3099. PubMed ID: 33232240 [TBL] [Abstract][Full Text] [Related]
22. A Kernel Reinforcement Learning Decoding Framework Integrating Neural and Feedback Signals for Brain Control. Zhang X; Wang Y Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083464 [TBL] [Abstract][Full Text] [Related]
23. A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Cunningham JP; Nuyujukian P; Gilja V; Chestek CA; Ryu SI; Shenoy KV J Neurophysiol; 2011 Apr; 105(4):1932-49. PubMed ID: 20943945 [TBL] [Abstract][Full Text] [Related]
24. A real-time brain-machine interface combining motor target and trajectory intent using an optimal feedback control design. Shanechi MM; Williams ZM; Wornell GW; Hu RC; Powers M; Brown EN PLoS One; 2013; 8(4):e59049. PubMed ID: 23593130 [TBL] [Abstract][Full Text] [Related]
25. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder. Boi F; Moraitis T; De Feo V; Diotalevi F; Bartolozzi C; Indiveri G; Vato A Front Neurosci; 2016; 10():563. PubMed ID: 28018162 [TBL] [Abstract][Full Text] [Related]
26. Tracking Neural Modulation Depth by Dual Sequential Monte Carlo Estimation on Point Processes for Brain-Machine Interfaces. Wang Y; She X; Liao Y; Li H; Zhang Q; Zhang S; Zheng X; Principe J IEEE Trans Biomed Eng; 2016 Aug; 63(8):1728-41. PubMed ID: 26584486 [TBL] [Abstract][Full Text] [Related]
32. Interfacing to the brain's motor decisions. Mirabella G; Lebedev MА J Neurophysiol; 2017 Mar; 117(3):1305-1319. PubMed ID: 28003406 [TBL] [Abstract][Full Text] [Related]
33. A simulation study on the effects of neuronal ensemble properties on decoding algorithms for intracortical brain-machine interfaces. Kim MK; Sohn JW; Lee B; Kim SP Biomed Eng Online; 2018 Feb; 17(1):28. PubMed ID: 29486778 [TBL] [Abstract][Full Text] [Related]
34. Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations. Wodlinger B; Downey JE; Tyler-Kabara EC; Schwartz AB; Boninger ML; Collinger JL J Neural Eng; 2015 Feb; 12(1):016011. PubMed ID: 25514320 [TBL] [Abstract][Full Text] [Related]
35. Combining decoder design and neural adaptation in brain-machine interfaces. Shenoy KV; Carmena JM Neuron; 2014 Nov; 84(4):665-80. PubMed ID: 25459407 [TBL] [Abstract][Full Text] [Related]
36. Likelihood Gradient Ascent (LGA): a closed-loop decoder adaptation algorithm for brain-machine interfaces. Dangi S; Gowda S; Carmena JM Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2768-71. PubMed ID: 24110301 [TBL] [Abstract][Full Text] [Related]
37. Development of a closed-loop feedback system for real-time control of a high-dimensional Brain Machine Interface. Putrino D; Wong YT; Vigeral M; Pesaran B Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4567-70. PubMed ID: 23366944 [TBL] [Abstract][Full Text] [Related]
38. Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface. Moorman HG; Gowda S; Carmena JM IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):750-760. PubMed ID: 27455526 [TBL] [Abstract][Full Text] [Related]
39. A Weight Transfer Mechanism for Kernel Reinforcement Learning Decoding in Brain-Machine Interfaces. Zhang X; Wang Y Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3547-3550. PubMed ID: 31946644 [TBL] [Abstract][Full Text] [Related]