These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 28113323)

  • 21. Task Learning Over Multi-Day Recording via Internally Rewarded Reinforcement Learning Based Brain Machine Interfaces.
    Shen X; Zhang X; Huang Y; Chen S; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3089-3099. PubMed ID: 33232240
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Kernel Reinforcement Learning Decoding Framework Integrating Neural and Feedback Signals for Brain Control.
    Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces.
    Cunningham JP; Nuyujukian P; Gilja V; Chestek CA; Ryu SI; Shenoy KV
    J Neurophysiol; 2011 Apr; 105(4):1932-49. PubMed ID: 20943945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A real-time brain-machine interface combining motor target and trajectory intent using an optimal feedback control design.
    Shanechi MM; Williams ZM; Wornell GW; Hu RC; Powers M; Brown EN
    PLoS One; 2013; 8(4):e59049. PubMed ID: 23593130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.
    Boi F; Moraitis T; De Feo V; Diotalevi F; Bartolozzi C; Indiveri G; Vato A
    Front Neurosci; 2016; 10():563. PubMed ID: 28018162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracking Neural Modulation Depth by Dual Sequential Monte Carlo Estimation on Point Processes for Brain-Machine Interfaces.
    Wang Y; She X; Liao Y; Li H; Zhang Q; Zhang S; Zheng X; Principe J
    IEEE Trans Biomed Eng; 2016 Aug; 63(8):1728-41. PubMed ID: 26584486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience.
    Schroeder KE; Chestek CA
    Front Neurosci; 2016; 10():291. PubMed ID: 27445663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Creating new functional circuits for action via brain-machine interfaces.
    Orsborn AL; Carmena JM
    Front Comput Neurosci; 2013 Nov; 7():157. PubMed ID: 24204342
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The decoder design and performance comparative analysis for closed-loop brain-machine interface system.
    Pan H; Fu Y; Zhang Q; Zhang J; Qin X
    Cogn Neurodyn; 2024 Feb; 18(1):147-164. PubMed ID: 39170600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Capturing spike train temporal pattern with wavelet average coefficient for brain machine interface.
    Wen S; Yin A; Tseng PH; Itti L; Lebedev MA; Nicolelis M
    Sci Rep; 2021 Sep; 11(1):19020. PubMed ID: 34561503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A symbiotic brain-machine interface through value-based decision making.
    Mahmoudi B; Sanchez JC
    PLoS One; 2011 Mar; 6(3):e14760. PubMed ID: 21423797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interfacing to the brain's motor decisions.
    Mirabella G; Lebedev MА
    J Neurophysiol; 2017 Mar; 117(3):1305-1319. PubMed ID: 28003406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simulation study on the effects of neuronal ensemble properties on decoding algorithms for intracortical brain-machine interfaces.
    Kim MK; Sohn JW; Lee B; Kim SP
    Biomed Eng Online; 2018 Feb; 17(1):28. PubMed ID: 29486778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations.
    Wodlinger B; Downey JE; Tyler-Kabara EC; Schwartz AB; Boninger ML; Collinger JL
    J Neural Eng; 2015 Feb; 12(1):016011. PubMed ID: 25514320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combining decoder design and neural adaptation in brain-machine interfaces.
    Shenoy KV; Carmena JM
    Neuron; 2014 Nov; 84(4):665-80. PubMed ID: 25459407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Likelihood Gradient Ascent (LGA): a closed-loop decoder adaptation algorithm for brain-machine interfaces.
    Dangi S; Gowda S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2768-71. PubMed ID: 24110301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a closed-loop feedback system for real-time control of a high-dimensional Brain Machine Interface.
    Putrino D; Wong YT; Vigeral M; Pesaran B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4567-70. PubMed ID: 23366944
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface.
    Moorman HG; Gowda S; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):750-760. PubMed ID: 27455526
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Weight Transfer Mechanism for Kernel Reinforcement Learning Decoding in Brain-Machine Interfaces.
    Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3547-3550. PubMed ID: 31946644
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.