BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28113330)

  • 1. Towards Retrieving Force Feedback in Robotic-Assisted Surgery: A Supervised Neuro-Recurrent-Vision Approach.
    Aviles AI; Alsaleh SM; Hahn JK; Casals A
    IEEE Trans Haptics; 2017; 10(3):431-443. PubMed ID: 28113330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force-feedback sensory substitution using supervised recurrent learning for robotic-assisted surgery.
    Aviles AI; Alsaleh SM; Sobrevilla P; Casals A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1-4. PubMed ID: 26736186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
    Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. External force estimation and implementation in robotically assisted minimally invasive surgery.
    Sang H; Yun J; Monfaredi R; Wilson E; Fooladi H; Cleary K
    Int J Med Robot; 2017 Jun; 13(2):. PubMed ID: 28466997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vision-Based Suture Tensile Force Estimation in Robotic Surgery.
    Jung WJ; Kwak KS; Lim SC
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force estimation from OCT volumes using 3D CNNs.
    Gessert N; Beringhoff J; Otte C; Schlaefer A
    Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):1073-1082. PubMed ID: 29728900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery.
    He C; Wang S; Sang H; Li J; Zhang L
    Int J Med Robot; 2014 Sep; 10(3):314-24. PubMed ID: 24030887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on real-time force feedback for a master-slave interventional surgical robotic system.
    Guo S; Wang Y; Xiao N; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):37. PubMed ID: 29654553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization.
    Talasaz A; Patel RV
    IEEE Trans Haptics; 2013; 6(2):217-28. PubMed ID: 24808305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating tactile feedback in robotic surgery for potential clinical application using an animal model.
    Wottawa CR; Genovese B; Nowroozi BN; Hart SD; Bisley JW; Grundfest WS; Dutson EP
    Surg Endosc; 2016 Aug; 30(8):3198-209. PubMed ID: 26514132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force feedback in a piezoelectric linear actuator for neurosurgery.
    De Lorenzo D; De Momi E; Dyagilev I; Manganelli R; Formaglio A; Prattichizzo D; Shoham M; Ferrigno G
    Int J Med Robot; 2011 Sep; 7(3):268-75. PubMed ID: 21538769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A force-sensing surgical tool with a proximally located force/torque sensor.
    Schwalb W; Shirinzadeh B; Smith J
    Int J Med Robot; 2017 Mar; 13(1):. PubMed ID: 26919028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards autonomous motion control in minimally invasive robotic surgery.
    Prendergast JM; Rentschler ME
    Expert Rev Med Devices; 2016 Aug; 13(8):741-8. PubMed ID: 27376789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force feedback plays a significant role in minimally invasive surgery: results and analysis.
    Tholey G; Desai JP; Castellanos AE
    Ann Surg; 2005 Jan; 241(1):102-9. PubMed ID: 15621997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A master manipulator with a remote-center-of-motion kinematic structure for a minimally invasive robotic surgical system.
    Lee H; Cheon B; Hwang M; Kang D; Kwon DS
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 29027359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compensatory force measurement and multimodal force feedback for remote-controlled vascular interventional robot.
    Bao X; Guo S; Xiao N; Li Y; Shi L
    Biomed Microdevices; 2018 Aug; 20(3):74. PubMed ID: 30116968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined 2D and 3D tracking of surgical instruments for minimally invasive and robotic-assisted surgery.
    Du X; Allan M; Dore A; Ourselin S; Hawkes D; Kelly JD; Stoyanov D
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1109-19. PubMed ID: 27038963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery.
    Guo J; Guo S; Yu Y
    Biomed Microdevices; 2016 Oct; 18(5):76. PubMed ID: 27499092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of optical fiber Bragg grating force-reflection sensor system of medical application for safe minimally invasive robotic surgery.
    Song H; Kim K; Lee J
    Rev Sci Instrum; 2011 Jul; 82(7):074301. PubMed ID: 21806202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robotic lobectomy: tips, pitfalls and troubleshooting.
    Kocher GJ; Schmid RA; Melfi FM
    Eur J Cardiothorac Surg; 2014 Dec; 46(6):e136-8. PubMed ID: 25281657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.