These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28113333)

  • 21. A numerical study of fluid-structure coupled effect of abdominal aortic aneurysm.
    Cong Y; Wang L; Liu X
    Biomed Mater Eng; 2015; 26 Suppl 1():S245-55. PubMed ID: 26406009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Eulerian method to analyze wall shear stress fixed points and manifolds in cardiovascular flows.
    Mazzi V; Gallo D; Calò K; Najafi M; Khan MO; De Nisco G; Steinman DA; Morbiducci U
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1403-1423. PubMed ID: 31865482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flow patterns and wall shear stresses in patient-specific models of the abdominal aortic aneurysm.
    Leung J; Wright A; Cheshire N; Thom SA; Hughes AD; Xu XY
    Stud Health Technol Inform; 2004; 103():235-42. PubMed ID: 15747926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A reduced-order model for wall shear stress in abdominal aortic aneurysms by proper orthogonal decomposition.
    Chang GH; Schirmer CM; Modarres-Sadeghi Y
    J Biomech; 2017 Mar; 54():33-43. PubMed ID: 28238422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms.
    Wolters BJ; Rutten MC; Schurink GW; Kose U; de Hart J; van de Vosse FN
    Med Eng Phys; 2005 Dec; 27(10):871-83. PubMed ID: 16157501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm.
    Marrero VL; Tichy JA; Sahni O; Jansen KE
    J Biomech Eng; 2014 Oct; 136(10):101001. PubMed ID: 24769921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hemodynamics study of a multilayer stent for the treatment of aneurysms.
    Xiong Y; Wang X; Jiang W; Tian X; Wang Q; Fan Y; Chen Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):134. PubMed ID: 28155682
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Finite element analysis of abdominal aortic aneurysms: predicted rupture risk correlates with aortic wall histology in individual patients.
    Erhart P; Grond-Ginsbach C; Hakimi M; Lasitschka F; Dihlmann S; Böckler D; Hyhlik-Dürr A
    J Endovasc Ther; 2014 Aug; 21(4):556-64. PubMed ID: 25101586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the atherosclerotic carotid bifurcation using MRI, finite element modeling, and histology.
    Kaazempur-Mofrad MR; Isasi AG; Younis HF; Chan RC; Hinton DP; Sukhova G; LaMuraglia GM; Lee RT; Kamm RD
    Ann Biomed Eng; 2004 Jul; 32(7):932-46. PubMed ID: 15298431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flow patterns and wall shear stress distribution in human internal carotid arteries: the geometric effect on the risk for stenoses.
    Zhang C; Xie S; Li S; Pu F; Deng X; Fan Y; Li D
    J Biomech; 2012 Jan; 45(1):83-9. PubMed ID: 22079384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Finite Element-Based Analysis of a Hemodynamics Efficient Flow Stent Suitable for Different Abdominal Aneurysm Shapes.
    Nada A; Fakhr MA; El-Wakad MTI; Hassan MA
    J Biomech Eng; 2022 Sep; 144(9):. PubMed ID: 35237800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hemodynamic Study of Flow Remodeling Stent Graft for the Treatment of Highly Angulated Abdominal Aortic Aneurysm.
    Yeow SL; Leo HL
    Comput Math Methods Med; 2016; 2016():3830123. PubMed ID: 27247612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wall Shear Stress Topological Skeleton Independently Predicts Long-Term Restenosis After Carotid Bifurcation Endarterectomy.
    Morbiducci U; Mazzi V; Domanin M; De Nisco G; Vergara C; Steinman DA; Gallo D
    Ann Biomed Eng; 2020 Dec; 48(12):2936-2949. PubMed ID: 32929560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flow-induced wall shear stress in abdominal aortic aneurysms: Part I--steady flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):309-18. PubMed ID: 12186710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wall shear stress exposure time: a Lagrangian measure of near-wall stagnation and concentration in cardiovascular flows.
    Arzani A; Gambaruto AM; Chen G; Shadden SC
    Biomech Model Mechanobiol; 2017 Jun; 16(3):787-803. PubMed ID: 27858174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Relationship Between Pulsatile Flow Impingement and Intraluminal Thrombus Deposition in Abdominal Aortic Aneurysms.
    Lozowy RJ; Kuhn DC; Ducas AA; Boyd AJ
    Cardiovasc Eng Technol; 2017 Mar; 8(1):57-69. PubMed ID: 27896659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flow stagnation volume and abdominal aortic aneurysm growth: Insights from patient-specific computational flow dynamics of Lagrangian-coherent structures.
    Joly F; Soulez G; Garcia D; Lessard S; Kauffmann C
    Comput Biol Med; 2018 Jan; 92():98-109. PubMed ID: 29169074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics.
    Ene F; Delassus P; Morris L
    Proc Inst Mech Eng H; 2014 Aug; 228(8):768-80. PubMed ID: 25085698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects on Aortoiliac Fluid Dynamics After Endovascular Sealing of Abdominal Aneurysms.
    Casciaro ME; Dottori J; El-Batti S; Alsac JM; Mousseaux E; Larrabide I; Craiem D
    Vasc Endovascular Surg; 2018 Nov; 52(8):621-628. PubMed ID: 30058480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into the co-localization of magnitude-based versus direction-based indicators of disturbed shear at the carotid bifurcation.
    Gallo D; Steinman DA; Morbiducci U
    J Biomech; 2016 Aug; 49(12):2413-9. PubMed ID: 26900036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.