These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28113338)

  • 1. SymPS: BRDF Symmetry Guided Photometric Stereo for Shape and Light Source Estimation.
    Lu F; Chen X; Sato I; Sato Y
    IEEE Trans Pattern Anal Mach Intell; 2018 Jan; 40(1):221-234. PubMed ID: 28113338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Intensity Profile to Surface Normal: Photometric Stereo for Unknown Light Sources and Isotropic Reflectances.
    Lu F; Matsushita Y; Sato I; Okabe T; Sato Y
    IEEE Trans Pattern Anal Mach Intell; 2015 Oct; 37(10):1999-2012. PubMed ID: 26353183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Photometric Stereo Networks for Determining Surface Normal and Reflectances.
    Santo H; Samejima M; Sugano Y; Shi B; Matsushita Y
    IEEE Trans Pattern Anal Mach Intell; 2022 Jan; 44(1):114-128. PubMed ID: 32750795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Benchmark Dataset and Evaluation for Non-Lambertian and Uncalibrated Photometric Stereo.
    Shi B; Mo Z; Wu Z; Duan D; Yeung SK; Tan P
    IEEE Trans Pattern Anal Mach Intell; 2019 Feb; 41(2):271-284. PubMed ID: 29993473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Photometric Stereo for Non-Lambertian Surfaces.
    Chen G; Han K; Shi B; Matsushita Y; Wong KK
    IEEE Trans Pattern Anal Mach Intell; 2022 Jan; 44(1):129-142. PubMed ID: 32750798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrete Search Photometric Stereo for Fast and Accurate Shape Estimation.
    Enomoto K; Waechter M; Okura F; Kutulakos KN; Matsushita Y
    IEEE Trans Pattern Anal Mach Intell; 2023 Apr; 45(4):4355-4367. PubMed ID: 35976840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Lambertian Photometric Stereo Network based on Inverse Reflectance Model with Collocated Light.
    Wang X; Jian Z; Ren M
    IEEE Trans Image Process; 2020 Apr; ():. PubMed ID: 32310771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Information Available to a Moving Observer on Shape with Unknown, Isotropic BRDFs.
    Chandraker M
    IEEE Trans Pattern Anal Mach Intell; 2016 Jul; 38(7):1283-97. PubMed ID: 26415156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Photometric Stereo Network with Multi-Scale Feature Aggregation.
    Yu C; Lee SW
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33153006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous material reflectance map for deep photometric stereo.
    Prouteau N; Joubert C; Bringier B; Khoudeir M
    J Opt Soc Am A Opt Image Sci Vis; 2023 Apr; 40(4):792-802. PubMed ID: 37132984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting Outlier Rejection Approach for Non-Lambertian Photometric Stereo.
    Cheng KHM; Kumar A
    IEEE Trans Image Process; 2018 Oct; ():. PubMed ID: 30307869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Reflectance Compensation for Non-Lambertian Photometric Stereo.
    Zheng Q; Kumar A; Shi B; Pan G
    IEEE Trans Image Process; 2019 Jul; 28(7):3177-3191. PubMed ID: 30676961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape and Spatially-Varying Reflectance Estimation from Virtual Exemplars.
    Hui Z; Sankaranarayanan AC
    IEEE Trans Pattern Anal Mach Intell; 2017 Oct; 39(10):2060-2073. PubMed ID: 27831859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Photometric Stereo Using Kernel Regression.
    Hui-Liang Shen ; Tian-Qi Han ; Chunguang Li
    IEEE Trans Image Process; 2017 Jan; 26(1):439-451. PubMed ID: 27849532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusing multiview and photometric stereo for 3D reconstruction under uncalibrated illumination.
    Wu C; Liu Y; Dai Q; Wilburn B
    IEEE Trans Vis Comput Graph; 2011 Aug; 17(8):1082-95. PubMed ID: 21659677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On differential photometric reconstruction for unknown, isotropic BRDFs.
    Chandraker M; Bai J; Ramamoorthi R
    IEEE Trans Pattern Anal Mach Intell; 2013 Dec; 35(12):2941-55. PubMed ID: 24136432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photometric Stereo for General BRDFs via Reflection Sparsity Modeling.
    Han TQ; Shen HL
    IEEE Trans Image Process; 2015 Dec; 24(12):4888-903. PubMed ID: 26302516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-View Photometric Stereo: A Robust Solution and Benchmark Dataset for Spatially Varying Isotropic Materials.
    Li M; Zhou Z; Wu Z; Shi B; Diao C; Tan P
    IEEE Trans Image Process; 2020 Jan; ():. PubMed ID: 32011254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photometric Stereo Using Sparse Bayesian Regression for General Diffuse Surfaces.
    Ikehata S; Wipf D; Matsushita Y; Aizawa K
    IEEE Trans Pattern Anal Mach Intell; 2014 Sep; 36(9):1816-31. PubMed ID: 26352234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SVBRDF-Invariant Shape and Reflectance Estimation from a Light-Field Camera.
    Wang TC; Chandraker M; Efros AA; Ramamoorthi R
    IEEE Trans Pattern Anal Mach Intell; 2018 Mar; 40(3):740-754. PubMed ID: 28320650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.