These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28113511)

  • 1. A Novel EMG Interface for Individuals With Tetraplegia to Pilot Robot Hand Grasping.
    Tigra W; Navarro B; Cherubini A; Gorron X; Gelis A; Fattal C; Guiraud D; Azevedo Coste C
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):291-298. PubMed ID: 28113511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assisted Grasping in Individuals with Tetraplegia: Improving Control through Residual Muscle Contraction and Movement.
    Fonseca L; Tigra W; Navarro B; Guiraud D; Fattal C; Bó A; Fachin-Martins E; Leynaert V; Gélis A; Azevedo-Coste C
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration.
    Ajiboye AB; Willett FR; Young DR; Memberg WD; Murphy BA; Miller JP; Walter BL; Sweet JA; Hoyen HA; Keith MW; Peckham PH; Simeral JD; Donoghue JP; Hochberg LR; Kirsch RF
    Lancet; 2017 May; 389(10081):1821-1830. PubMed ID: 28363483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensing and decoding the neural drive to paralyzed muscles during attempted movements of a person with tetraplegia using a sleeve array.
    Ting JE; Del Vecchio A; Sarma D; Verma N; Colachis SC; Annetta NV; Collinger JL; Farina D; Weber DJ
    J Neurophysiol; 2021 Dec; 126(6):2104-2118. PubMed ID: 34788156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methodologies for determining minimal grasping requirements and sensor locations for sEMG-based assistive hand orthosis for SCI patients.
    Yun Y; Esmatloo P; Serrato A; Merring CA; Deshpande AD
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():746-752. PubMed ID: 28813909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upper extremity function in persons with tetraplegia: relationships between strength, capacity, and the spinal cord independence measure.
    Rudhe C; van Hedel HJ
    Neurorehabil Neural Repair; 2009 Jun; 23(5):413-21. PubMed ID: 19261766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of head orientation and neck muscle EMG signals as three-dimensional command sources.
    Williams MR; Kirsch RF
    J Neuroeng Rehabil; 2015 Mar; 12():25. PubMed ID: 25881286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wireless intraoral tongue control of an assistive robotic arm for individuals with tetraplegia.
    Andreasen Struijk LNS; Egsgaard LL; Lontis R; Gaihede M; Bentsen B
    J Neuroeng Rehabil; 2017 Nov; 14(1):110. PubMed ID: 29110736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary electrophysiological characterization of functionally vestigial muscles of the head: potential for command signaling.
    Friedman RN; McMillan GR; Kincaid JC; Buschbacher RM
    J Spinal Cord Med; 1999; 22(3):167-72. PubMed ID: 10685381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A wearable neural interface for detecting and decoding attempted hand movements in a person with tetraplegia.
    Ting J; Farina D; Weber DJ; Del Vecchio A; Friedenberg D; Liu M; Schoenewald C; Sarma D; Collinger J; Colachis S; Sharma G
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1930-1933. PubMed ID: 31946276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steer by ear: Myoelectric auricular control of powered wheelchairs for individuals with spinal cord injury.
    Schmalfuß L; Rupp R; Tuga MR; Kogut A; Hewitt M; Meincke J; Klinker F; Duttenhoefer W; Eck U; Mikut R; Reischl M; Liebetanz D
    Restor Neurol Neurosci; 2016; 34(1):79-95. PubMed ID: 26599475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between function, strength and electromyography of upper extremities of persons with tetraplegia.
    de Vargas Ferreira VM; Varoto R; Azevedo Cacho ÊW; Cliquet A
    Spinal Cord; 2012 Jan; 50(1):28-32. PubMed ID: 21876551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electrocorticographic brain interface in an individual with tetraplegia.
    Wang W; Collinger JL; Degenhart AD; Tyler-Kabara EC; Schwartz AB; Moran DW; Weber DJ; Wodlinger B; Vinjamuri RK; Ashmore RC; Kelly JW; Boninger ML
    PLoS One; 2013; 8(2):e55344. PubMed ID: 23405137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating Upper Limb Movement Classification on Users with Tetraplegia as a Possible Neuroprosthesis Interface.
    Fonseca L; Bo A; Guiraud D; Navarro B; Gelis A; Azevedo-Coste C
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5053-5056. PubMed ID: 30441476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes on EMG activation in healthy subjects and incomplete SCI patients following a robot-assisted locomotor training.
    Mazzoleni S; Boldrini E; Laschi C; Carrozza MC; Stampacchia G; Rossi B
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975467. PubMed ID: 22275665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of 3D-printed myoelectric hand orthosis for patients with spinal cord injury.
    Yoo HJ; Lee S; Kim J; Park C; Lee B
    J Neuroeng Rehabil; 2019 Dec; 16(1):162. PubMed ID: 31888695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.
    Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL
    J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Multimodal Assistive-Robotic-Arm Control System to Increase Independence After Tetraplegia.
    Hansen TC; Tully TN; John Mathews V; Warren DJ
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2124-2133. PubMed ID: 38829756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robot-Assisted Training of Arm and Hand Movement Shows Functional Improvements for Incomplete Cervical Spinal Cord Injury.
    Francisco GE; Yozbatiran N; Berliner J; OʼMalley MK; Pehlivan AU; Kadivar Z; Fitle K; Boake C
    Am J Phys Med Rehabil; 2017 Oct; 96(10 Suppl 1):S171-S177. PubMed ID: 28857769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EMG Pattern Recognition for Persons with Cervical Spinal Cord Injury.
    Seth N; Freitas RC; Chaulk M; O'Connell C; Englehart K; Scheme E
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1055-1060. PubMed ID: 31374769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.