BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 28113726)

  • 1. Enhancing Protein Conformational Space Sampling Using Distance Profile-Guided Differential Evolution.
    Zhang GJ; Zhou XG; Yu XF; Hao XH; Yu L
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1288-1301. PubMed ID: 28113726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Stage Distance Feature-based Optimization Algorithm for De novo Protein Structure Prediction.
    Zhang GJ; Wang XQ; Ma LF; Wang LJ; Hu J; Zhou XG
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2119-2130. PubMed ID: 31107659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A population-based evolutionary search approach to the multiple minima problem in de novo protein structure prediction.
    Saleh S; Olson B; Shehu A
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S4. PubMed ID: 24565020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast de novo discovery of low-energy protein loop conformations.
    Wong SWK; Liu JS; Kou SC
    Proteins; 2017 Aug; 85(8):1402-1412. PubMed ID: 28378911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational Space Sampling Method Using Multi-Subpopulation Differential Evolution for De novo Protein Structure Prediction.
    Hao XH; Zhang GJ; Zhou XG
    IEEE Trans Nanobioscience; 2017 Oct; 16(7):618-633. PubMed ID: 28885157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MMpred: a distance-assisted multimodal conformation sampling for de novo protein structure prediction.
    Zhao KL; Liu J; Zhou XG; Su JZ; Zhang Y; Zhang GJ
    Bioinformatics; 2021 Dec; 37(23):4350-4356. PubMed ID: 34185079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A de novo protein structure prediction by iterative partition sampling, topology adjustment and residue-level distance deviation optimization.
    Liu J; Zhao KL; He GX; Wang LJ; Zhou XG; Zhang GJ
    Bioinformatics; 2021 Dec; 38(1):99-107. PubMed ID: 34459867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A critical analysis of computational protein design with sparse residue interaction graphs.
    Jain S; Jou JD; Georgiev IS; Donald BR
    PLoS Comput Biol; 2017 Mar; 13(3):e1005346. PubMed ID: 28358804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From Extraction of Local Structures of Protein Energy Landscapes to Improved Decoy Selection in Template-Free Protein Structure Prediction.
    Akhter N; Shehu A
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29351266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How well can we predict native contacts in proteins based on decoy structures and their energies?
    Zhu J; Zhu Q; Shi Y; Liu H
    Proteins; 2003 Sep; 52(4):598-608. PubMed ID: 12910459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Balancing multiple objectives in conformation sampling to control decoy diversity in template-free protein structure prediction.
    Zaman AB; Shehu A
    BMC Bioinformatics; 2019 Apr; 20(1):211. PubMed ID: 31023237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UniCon3D: de novo protein structure prediction using united-residue conformational search via stepwise, probabilistic sampling.
    Bhattacharya D; Cao R; Cheng J
    Bioinformatics; 2016 Sep; 32(18):2791-9. PubMed ID: 27259540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of fragment-based protein structure prediction: biased fragment replacement for searching low-energy conformation.
    Park SJ
    Genome Inform; 2005; 16(2):104-13. PubMed ID: 16901094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between self-guided Langevin dynamics and molecular dynamics simulations for structure refinement of protein loop conformations.
    Olson MA; Chaudhury S; Lee MS
    J Comput Chem; 2011 Nov; 32(14):3014-22. PubMed ID: 21793008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.
    Schueler-Furman O; Wang C; Baker D
    Proteins; 2005 Aug; 60(2):187-94. PubMed ID: 15981249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational Sampling of a Biomolecular Rugged Energy Landscape.
    Rydzewski J; Jakubowski R; Nicosia G; Nowak W
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):732-739. PubMed ID: 27913358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large loop conformation sampling using the activation relaxation technique, ART-nouveau method.
    St-Pierre JF; Mousseau N
    Proteins; 2012 Jul; 80(7):1883-94. PubMed ID: 22488731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational method for the design of nested proteins by loop-directed domain insertion.
    Blacklock KM; Yang L; Mulligan VK; Khare SD
    Proteins; 2018 Mar; 86(3):354-369. PubMed ID: 29250820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refining near-native protein-protein docking decoys by local resampling and energy minimization.
    Liang S; Wang G; Zhou Y
    Proteins; 2009 Aug; 76(2):309-16. PubMed ID: 19156819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.