These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28113746)

  • 1. Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model.
    Liu F; Velikina JV; Block WF; Kijowski R; Samsonov AA
    IEEE Trans Med Imaging; 2017 Feb; 36(2):527-537. PubMed ID: 28113746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MRISIMUL: a GPU-based parallel approach to MRI simulations.
    Xanthis CG; Venetis IE; Chalkias AV; Aletras AH
    IEEE Trans Med Imaging; 2014 Mar; 33(3):607-17. PubMed ID: 24595337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High performance MRI simulations of motion on multi-GPU systems.
    Xanthis CG; Venetis IE; Aletras AH
    J Cardiovasc Magn Reson; 2014 Jul; 16(1):48. PubMed ID: 24996972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PhoenixMR: A GPU-based MRI simulation framework with runtime-dynamic code execution.
    Duncan-Gelder P; O'Keeffe D; Bones P; Marsh S
    Med Phys; 2024 Sep; 51(9):6120-6133. PubMed ID: 39078046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KomaMRI.jl: An open-source framework for general MRI simulations with GPU acceleration.
    Castillo-Passi C; Coronado R; Varela-Mattatall G; Alberola-López C; Botnar R; Irarrazaval P
    Magn Reson Med; 2023 Jul; 90(1):329-342. PubMed ID: 36877139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BlochSolver: A GPU-optimized fast 3D MRI simulator for experimentally compatible pulse sequences.
    Kose R; Kose K
    J Magn Reson; 2017 Aug; 281():51-65. PubMed ID: 28550818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel CPU/GPU simulation environment for large-scale biologically realistic neural modeling.
    Hoang RV; Tanna D; Jayet Bray LC; Dascalu SM; Harris FC
    Front Neuroinform; 2013; 7():19. PubMed ID: 24106475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. coreMRI: A high-performance, publicly available MR simulation platform on the cloud.
    Xanthis CG; Aletras AH
    PLoS One; 2019; 14(5):e0216594. PubMed ID: 31100074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NeuroGPU: Accelerating multi-compartment, biophysically detailed neuron simulations on GPUs.
    Ben-Shalom R; Ladd A; Artherya NS; Cross C; Kim KG; Sanghevi H; Korngreen A; Bouchard KE; Bender KJ
    J Neurosci Methods; 2022 Jan; 366():109400. PubMed ID: 34728257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast GPU-based Monte Carlo simulation of proton transport with detailed modeling of nonelastic interactions.
    Wan Chan Tseung H; Ma J; Beltran C
    Med Phys; 2015 Jun; 42(6):2967-78. PubMed ID: 26127050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LASSIE: simulating large-scale models of biochemical systems on GPUs.
    Tangherloni A; Nobile MS; Besozzi D; Mauri G; Cazzaniga P
    BMC Bioinformatics; 2017 May; 18(1):246. PubMed ID: 28486952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gell: A GPU-powered 3D hybrid simulator for large-scale multicellular system.
    Du J; Zhou Y; Jin L; Sheng K
    PLoS One; 2023; 18(7):e0288721. PubMed ID: 37463167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.
    Malektaji S; Lima IT; Escobar I MR; Sherif SS
    Comput Methods Programs Biomed; 2017 Oct; 150():97-105. PubMed ID: 28859833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GPU-accelerated FDTD modeling of radio-frequency field-tissue interactions in high-field MRI.
    Chi J; Liu F; Weber E; Li Y; Crozier S
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1789-96. PubMed ID: 21335302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The visible ear simulator: a public PC application for GPU-accelerated haptic 3D simulation of ear surgery based on the visible ear data.
    Sorensen MS; Mosegaard J; Trier P
    Otol Neurotol; 2009 Jun; 30(4):484-7. PubMed ID: 19546800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GPU-based fast Monte Carlo simulation for radiotherapy dose calculation.
    Jia X; Gu X; Graves YJ; Folkerts M; Jiang SB
    Phys Med Biol; 2011 Nov; 56(22):7017-31. PubMed ID: 22016026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-GPU implementation of a VMAT treatment plan optimization algorithm.
    Tian Z; Peng F; Folkerts M; Tan J; Jia X; Jiang SB
    Med Phys; 2015 Jun; 42(6):2841-52. PubMed ID: 26127037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CPU-GPU mixed implementation of virtual node method for real-time interactive cutting of deformable objects using OpenCL.
    Jia S; Zhang W; Yu X; Pan Z
    Int J Comput Assist Radiol Surg; 2015 Sep; 10(9):1477-91. PubMed ID: 25578992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast on-site Monte Carlo tool for dose calculations in CT applications.
    Chen W; Kolditz D; Beister M; Bohle R; Kalender WA
    Med Phys; 2012 Jun; 39(6):2985-96. PubMed ID: 22755683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.