These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 28113771)

  • 1. Using Self-Reliance Factors to Decide How to Share Control Between Human Powered Wheelchair Drivers and Ultrasonic Sensors.
    Sanders DA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1221-1229. PubMed ID: 28113771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shared control strategies for obstacle avoidance tasks in an intelligent wheelchair.
    Trieu HT; Nguyen HT; Willey K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4254-7. PubMed ID: 19163652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using a smart wheelchair as a gaming device for floor-projected games: a mixed-reality environment for training powered-wheelchair driving skills.
    Secoli R; Zondervan D; Reinkensmeyer D
    Stud Health Technol Inform; 2012; 173():450-6. PubMed ID: 22357035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The NavChair Assistive Wheelchair Navigation System.
    Levine SP; Bell DA; Jaros LA; Simpson RC; Koren Y; Borenstein J
    IEEE Trans Rehabil Eng; 1999 Dec; 7(4):443-51. PubMed ID: 10609632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Middlesex University rehabilitation robot.
    Parsons B; White A; Prior S; Warner P
    J Med Eng Technol; 2005; 29(4):151-62. PubMed ID: 16012066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selecting a Best Compromise Direction for a Powered Wheelchair Using PROMETHEE.
    Haddad MJ; Sanders DA
    IEEE Trans Neural Syst Rehabil Eng; 2019 Feb; 27(2):228-235. PubMed ID: 30640619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inductive tongue control of powered wheelchairs.
    Lund ME; Christiensen HV; Caltenco HA; Lontis ER; Bentsen B; Andreasen Struijk LN
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3361-4. PubMed ID: 21097235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities.
    Wästlund E; Sponseller K; Pettersson O; Bared A
    J Rehabil Res Dev; 2015; 52(7):815-26. PubMed ID: 26744901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic Tethering to Enable Side-by-Side Following for Powered Wheelchairs.
    Pingali TR; Lemaire ED; Baddour N
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30598029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward gesture controlled wheelchair: a proof of concept study.
    Kawarazaki N; Stefanov D; Diaz AI
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650348. PubMed ID: 24187167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of joystick control during the performance of powered wheelchair driving tasks.
    Sorrento GU; Archambault PS; Routhier F; Dessureault D; Boissy P
    J Neuroeng Rehabil; 2011 May; 8():31. PubMed ID: 21609435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of a Wheelchair in an Indoor Environment Based on a Brain-Computer Interface and Automated Navigation.
    Zhang R; Li Y; Yan Y; Zhang H; Wu S; Yu T; Gu Z
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):128-39. PubMed ID: 26054072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using machine learning to blend human and robot controls for assisted wheelchair navigation.
    Goil A; Derry M; Argall BD
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650454. PubMed ID: 24187271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning Architecture to Assist With Steering a Powered Wheelchair.
    Haddad MJ; Sanders DA
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2987-2994. PubMed ID: 33055019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assisting versus repelling force-feedback for learning of a line following task in a wheelchair.
    Chen X; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):959-68. PubMed ID: 23475377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced robust tracking control of a powered wheelchair system.
    Nguyen NT; Nguyen HT; Su S
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4767-70. PubMed ID: 18003071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Case-based reasoning emulation of persons for wheelchair navigation.
    Peula JM; Urdiales C; Herrero I; Fernandez-Carmona M; Sandoval F
    Artif Intell Med; 2012 Oct; 56(2):109-21. PubMed ID: 23068883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The smart wheelchair component system.
    Simpson R; Lopresti E; Hayashi S; Nourbakhsh I; Miller D
    J Rehabil Res Dev; 2004 May; 41(3B):429-42. PubMed ID: 15543461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Data Logger for Capturing Human-Machine Interaction in Wheelchair Head-Foot Steering Sensor System in Dyskinetic Cerebral Palsy.
    Gakopoulos S; Nica IG; Bekteshi S; Aerts JM; Monbaliu E; Hallez H
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of user preference over shared-control paradigms for a robotic wheelchair.
    Erdogan A; Argall BD
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1106-1111. PubMed ID: 28813969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.