These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28113826)

  • 1. Design and Application of a Variable Selection Method for Multilayer Perceptron Neural Network With LASSO.
    Sun K; Huang SH; Wong DS; Jang SS
    IEEE Trans Neural Netw Learn Syst; 2017 Jun; 28(6):1386-1396. PubMed ID: 28113826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recursive Random Forests Enable Better Predictive Performance and Model Interpretation than Variable Selection by LASSO.
    Zhu XW; Xin YJ; Ge HL
    J Chem Inf Model; 2015 Apr; 55(4):736-46. PubMed ID: 25746224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of the recurrent multilayer perceptron in modeling complex process dynamics.
    Parlos AG; Chong KT; Atiya AF
    IEEE Trans Neural Netw; 1994; 5(2):255-66. PubMed ID: 18267795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A data calibration method for micro air quality detectors based on a LASSO regression and NARX neural network combined model.
    Liu B; Jin Y; Xu D; Wang Y; Li C
    Sci Rep; 2021 Oct; 11(1):21173. PubMed ID: 34707155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable selection for multiply-imputed data with application to dioxin exposure study.
    Chen Q; Wang S
    Stat Med; 2013 Sep; 32(21):3646-59. PubMed ID: 23526243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multivariable System Prediction Based on TCN-LSTM Networks with Self-Attention Mechanism and LASSO Variable Selection.
    Shao Y; Tang J; Liu J; Han L; Dong S
    ACS Omega; 2023 Dec; 8(50):47798-47811. PubMed ID: 38144132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the prediction of going concern of Taiwanese listed companies using a hybrid of LASSO with data mining techniques.
    Goo YJ; Chi DJ; Shen ZD
    Springerplus; 2016; 5():539. PubMed ID: 27186503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Term Selection for a Class of Separable Nonlinear Models.
    Gan M; Chen GY; Chen L; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2020 Feb; 31(2):445-451. PubMed ID: 30990193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seminal quality prediction using data mining methods.
    Sahoo AJ; Kumar Y
    Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bootstrapping soft shrinkage approach for variable selection in chemical modeling.
    Deng BC; Yun YH; Cao DS; Yin YL; Wang WT; Lu HM; Luo QY; Liang YZ
    Anal Chim Acta; 2016 Feb; 908():63-74. PubMed ID: 26826688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An accelerated learning algorithm for multilayer perceptrons: optimization layer by layer.
    Ergezinger S; Thomsen E
    IEEE Trans Neural Netw; 1995; 6(1):31-42. PubMed ID: 18263283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the Lasso Approach for Developing a Survival Prediction Model Based on Gene Expression Data.
    Kaneko S; Hirakawa A; Hamada C
    Comput Math Methods Med; 2015; 2015():259474. PubMed ID: 26146513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.
    Ranganayaki V; Deepa SN
    ScientificWorldJournal; 2016; 2016():9293529. PubMed ID: 27034973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of direct nonlinear effective connectivity using information theory and multilayer perceptron.
    Khadem A; Hossein-Zadeh GA
    J Neurosci Methods; 2014 May; 229():53-67. PubMed ID: 24751646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid linear/nonlinear training algorithm for feedforward neural networks.
    McLoone S; Brown MD; Irwin G; Lightbody A
    IEEE Trans Neural Netw; 1998; 9(4):669-84. PubMed ID: 18252490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity analysis of multilayer perceptron with differentiable activation functions.
    Choi JY; Choi CH
    IEEE Trans Neural Netw; 1992; 3(1):101-7. PubMed ID: 18276410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Explainability of Neural Networks Through Architecture Constraints.
    Yang Z; Zhang A; Sudjianto A
    IEEE Trans Neural Netw Learn Syst; 2021 Jun; 32(6):2610-2621. PubMed ID: 32716891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance comparison between Logistic regression, decision trees, and multilayer perceptron in predicting peripheral neuropathy in type 2 diabetes mellitus.
    Li CP; Zhi XY; Ma J; Cui Z; Zhu ZL; Zhang C; Hu LP
    Chin Med J (Engl); 2012 Mar; 125(5):851-7. PubMed ID: 22490586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel High-Speed and High-Accuracy Mathematical Modeling Method of Complex MEMS Resonator Structures Based on the Multilayer Perceptron Neural Network.
    Li Q; Lu K; Wu K; Zhang H; Sun X; Wu X; Xiao D
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A universal deep learning approach for modeling the flow of patients under different severities.
    Jiang S; Chin KS; Tsui KL
    Comput Methods Programs Biomed; 2018 Feb; 154():191-203. PubMed ID: 29249343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.