These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 28113931)

  • 1. Bilateral CMUT Cells and Arrays: Equivalent Circuits, Diffraction Constants, and Substrate Impedance.
    Koymen H; Atalar A; Tasdelen AS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Feb; 64(2):414-423. PubMed ID: 28113931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rayleigh-Bloch waves in CMUT arrays.
    Atalar A; Köymen H; Oğuz HK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):2139-48. PubMed ID: 25474788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equivalent circuit-based analysis of CMUT cell dynamics in arrays.
    Oguz HK; Atalar A; Köymen H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):1016-24. PubMed ID: 23661137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation impedance of collapsed capacitive micromachined ultrasonic transducers.
    Ozgurluk A; Atalar A; Köymen H; Olçum S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1301-8. PubMed ID: 22718881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CMUT With Substrate-Embedded Springs For Non-Flexural Plate Movement.
    Nikoozadeh A; Khuri-Yakub PT
    Proc IEEE Ultrason Symp; 2010; 2010():1510-1513. PubMed ID: 25264419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Nonlinear Lumped Equivalent Circuit Model for a Single Uncollapsed Square CMUT Cell.
    Maadi M; Zemp RJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Aug; 66(8):1340-1351. PubMed ID: 31059436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison between conventional and collapse-mode capacitive micromachined ultrasonic transducers in 10-MHz 1-D arrays.
    Park KK; Oralkan O; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jun; 60(6):1245-55. PubMed ID: 25004488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-power CMUTs: design and experimental verification.
    Yamaner FY; Olçum S; Oğuz HK; Bozkurt A; Köymen H; Atalar A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1276-84. PubMed ID: 22718878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grooved backing structure for CMUTs.
    Chapagain KR; Rønnekleiv A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2440-52. PubMed ID: 24158298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear modeling of an immersed transmitting capacitive micromachined ultrasonic transducer for harmonic balance analysis.
    Oguz HK; Olcum S; Senlik MN; Taş V; Atalar A; Köymen H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):438-47. PubMed ID: 20178910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on Design Theory and Performance Analysis of Vacuum Capacitive Micromachined Ultrasonic Transducer.
    Huang X; Wang H; Yu L
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wafer-bonded 2-D CMUT arrays incorporating through-wafer trench-isolated interconnects with a supporting frame.
    Zhuang X; Wygant IO; Lin DS; Kupnik M; Oralkan O; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jan; 56(1):182-92. PubMed ID: 19213645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of Trench-Isolated Through-Wafer Interconnects with 2D Capacitive Micromachined Ultrasonic Transducer Arrays.
    Zhuang X; Ergun AS; Huang Y; Wygant IO; Oralkan O; Khuri-Yakub BT
    Sens Actuators A Phys; 2007 Jul; 138(1):221-229. PubMed ID: 18037982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploitation of capacitive micromachined transducers for nonlinear ultrasound imaging.
    Novell A; Legros M; Felix N; Bouakaz A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2733-43. PubMed ID: 20040410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Analysis Method for Capacitive Micromachined Ultrasound Transducer (CMUT) Energy Conversion during Large Signal Operation.
    Pirouz A; Degertekin FL
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved lumped element nonlinear circuit model for a circular CMUT cell.
    Köymen H; Atalar A; Aydoğdu E; Kocabaş C; Oğuz HK; Olçum S; Ozgurluk A; Unlügedik A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1791-9. PubMed ID: 22899125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CMUT array modeling through free acoustic CMUT modes and analysis of the fluid CMUT interface through Fourier transform methods.
    Rønnekleiv A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2173-84. PubMed ID: 16463484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Boundary Element Model for CMUT-Arrays Loaded by a Viscoelastic Medium.
    Hery M; Senegond N; Certon D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Apr; 67(4):779-788. PubMed ID: 31751236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unbiased Charged Circular CMUT Microphone: Lumped-Element Modeling and Performance.
    Koymen H; Atalar A; Guler S; Koymen I; Tasdelen AS; Unlugedik A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):60-71. PubMed ID: 29283348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Packaging and modular assembly of large-area and fine-pitch 2-D ultrasonic transducer arrays.
    Lin DS; Wodnicki R; Zhuang X; Woychik C; Thomenius KE; Fisher RA; Mills DM; Byun AJ; Burdick W; Khuri-Yakub P; Bonitz B; Davies T; Thomas G; Otto B; Töpper M; Fritzsch T; Ehrmann O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1356-75. PubMed ID: 25004504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.