These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 28113983)

  • 1. Classification of Protein Structure Classes on Flexible Neutral Tree.
    Bao W; Wang D; Chen Y
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(5):1122-1133. PubMed ID: 28113983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of protein structure classes with flexible neural tree.
    Bao W; Chen Y; Wang D
    Biomed Mater Eng; 2014; 24(6):3797-806. PubMed ID: 25227096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discriminating protein structure classes by incorporating Pseudo Average Chemical Shift to Chou's general PseAAC and Support Vector Machine.
    Hayat M; Iqbal N
    Comput Methods Programs Biomed; 2014 Oct; 116(3):184-92. PubMed ID: 24997484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional shape-structure comparison method for protein classification.
    Daras P; Zarpalas D; Axenopoulos A; Tzovaras D; Strintzis MG
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(3):193-207. PubMed ID: 17048458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FAMS and FAMSBASE for protein structure.
    Umeyama H; Iwadate M
    Curr Protoc Bioinformatics; 2004 Feb; Chapter 5():Unit5.2. PubMed ID: 18428727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.
    Shamim MT; Anwaruddin M; Nagarajaram HA
    Bioinformatics; 2007 Dec; 23(24):3320-7. PubMed ID: 17989092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PFRES: protein fold classification by using evolutionary information and predicted secondary structure.
    Chen K; Kurgan L
    Bioinformatics; 2007 Nov; 23(21):2843-50. PubMed ID: 17942446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using an alignment of fragment strings for comparing protein structures.
    Friedberg I; Harder T; Kolodny R; Sitbon E; Li Z; Godzik A
    Bioinformatics; 2007 Jan; 23(2):e219-24. PubMed ID: 17237095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple Alignment of protein structures and sequences for VMD.
    Eargle J; Wright D; Luthey-Schulten Z
    Bioinformatics; 2006 Feb; 22(4):504-6. PubMed ID: 16339280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSCOP--SCOP quantified by structural relationships.
    Suhrer SJ; Wiederstein M; Sippl MJ
    Bioinformatics; 2007 Feb; 23(4):513-4. PubMed ID: 17127679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CHORAL: a differential geometry approach to the prediction of the cores of protein structures.
    Montalvão RW; Smith RE; Lovell SC; Blundell TL
    Bioinformatics; 2005 Oct; 21(19):3719-25. PubMed ID: 16046494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving homology models for protein-ligand binding sites.
    Kauffman C; Rangwala H; Karypis G
    Comput Syst Bioinformatics Conf; 2008; 7():211-22. PubMed ID: 19642282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DomNet: protein domain boundary prediction using enhanced general regression network and new profiles.
    Yoo PD; Sikder AR; Taheri J; Zhou BB; Zomaya AY
    IEEE Trans Nanobioscience; 2008 Jun; 7(2):172-81. PubMed ID: 18556265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput 3D structural homology detection via NMR resonance assignment.
    Langmead CJ; Donald BR
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():278-89. PubMed ID: 16448021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can molecular dynamics simulations help in discriminating correct from erroneous protein 3D models?
    Taly JF; Marin A; Gibrat JF
    BMC Bioinformatics; 2008 Jan; 9():6. PubMed ID: 18179702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaussian-weighted RMSD superposition of proteins: a structural comparison for flexible proteins and predicted protein structures.
    Damm KL; Carlson HA
    Biophys J; 2006 Jun; 90(12):4558-73. PubMed ID: 16565070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tree-decomposition approach to protein structure prediction.
    Xu J; Jiao F; Berger B
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():247-56. PubMed ID: 16447982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection.
    Damoulas T; Girolami MA
    Bioinformatics; 2008 May; 24(10):1264-70. PubMed ID: 18378524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Similarity Search of Flexible 3D Molecules Combining Local and Global Shape Descriptors.
    Axenopoulos A; Rafailidis D; Papadopoulos G; Houstis EN; Daras P
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):954-970. PubMed ID: 26561479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence based residue depth prediction using evolutionary information and predicted secondary structure.
    Zhang H; Zhang T; Chen K; Shen S; Ruan J; Kurgan L
    BMC Bioinformatics; 2008 Sep; 9():388. PubMed ID: 18803867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.