These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 28114007)
21. Bagging survival tree procedure for variable selection and prediction in the presence of nonsusceptible patients. Mbogning C; Broët P BMC Bioinformatics; 2016 Jun; 17(1):230. PubMed ID: 27266372 [TBL] [Abstract][Full Text] [Related]
22. Unbiased split variable selection for random survival forests using maximally selected rank statistics. Wright MN; Dankowski T; Ziegler A Stat Med; 2017 Apr; 36(8):1272-1284. PubMed ID: 28088842 [TBL] [Abstract][Full Text] [Related]
23. The Effect of Splitting on Random Forests. Ishwaran H Mach Learn; 2015 Apr; 99(1):75-118. PubMed ID: 28919667 [TBL] [Abstract][Full Text] [Related]
24. Selection of models for the analysis of risk-factor trees: leveraging biological knowledge to mine large sets of risk factors with application to microbiome data. Zhang Q; Abel H; Wells A; Lenzini P; Gomez F; Province MA; Templeton AA; Weinstock GM; Salzman NH; Borecki IB Bioinformatics; 2015 May; 31(10):1607-13. PubMed ID: 25568281 [TBL] [Abstract][Full Text] [Related]
25. Association between split selection instability and predictive error in survival trees. Radespiel-Tröger M; Gefeller O; Rabenstein T; Hothorn T Methods Inf Med; 2006; 45(5):548-56. PubMed ID: 17019510 [TBL] [Abstract][Full Text] [Related]
26. Scoring and staging systems using cox linear regression modeling and recursive partitioning. Lee JW; Um SH; Lee JB; Mun J; Cho H Methods Inf Med; 2006; 45(1):37-43. PubMed ID: 16482368 [TBL] [Abstract][Full Text] [Related]
27. River ice breakup timing prediction through stacking multi-type model trees. Sun W Sci Total Environ; 2018 Dec; 644():1190-1200. PubMed ID: 30743832 [TBL] [Abstract][Full Text] [Related]
28. Deciding on the Starting Number of Classes of a Latent Class Tree. van den Bergh M; van Kollenburg GH; Vermunt JK Sociol Methodol; 2018 Aug; 48(1):303-336. PubMed ID: 30587879 [TBL] [Abstract][Full Text] [Related]
29. Boosting model performance and interpretation by entangling preprocessing selection and variable selection. Gerretzen J; Szymańska E; Bart J; Davies AN; van Manen HJ; van den Heuvel ER; Jansen JJ; Buydens LM Anal Chim Acta; 2016 Sep; 938():44-52. PubMed ID: 27619085 [TBL] [Abstract][Full Text] [Related]
30. Exponential survival trees. Davis RB; Anderson JR Stat Med; 1989 Aug; 8(8):947-61. PubMed ID: 2799124 [TBL] [Abstract][Full Text] [Related]
31. Ligand-based models for the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates. Terfloth L; Bienfait B; Gasteiger J J Chem Inf Model; 2007; 47(4):1688-701. PubMed ID: 17608404 [TBL] [Abstract][Full Text] [Related]
32. Unimodal transform of variables selected by interval segmentation purity for classification tree modeling of high-dimensional microarray data. Du W; Gu T; Tang LJ; Jiang JH; Wu HL; Shen GL; Yu RQ Talanta; 2011 Sep; 85(3):1689-94. PubMed ID: 21807240 [TBL] [Abstract][Full Text] [Related]
33. A kernel-based two-class classifier for imbalanced data sets. Hong X; Chen S; Harris CJ IEEE Trans Neural Netw; 2007 Jan; 18(1):28-41. PubMed ID: 17278459 [TBL] [Abstract][Full Text] [Related]
34. Classification tree prediction models for dental caries from clinical, microbiological, and interview data. Stewart PW; Stamm JW J Dent Res; 1991 Sep; 70(9):1239-51. PubMed ID: 1918574 [TBL] [Abstract][Full Text] [Related]
35. New Splitting Criteria for Decision Trees in Stationary Data Streams. Jaworski M; Duda P; Rutkowski L; Jaworski M; Duda P; Rutkowski L; Rutkowski L; Duda P; Jaworski M IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2516-2529. PubMed ID: 28500013 [TBL] [Abstract][Full Text] [Related]
36. Building interpretable predictive models for pediatric hospital readmission using Tree-Lasso logistic regression. Jovanovic M; Radovanovic S; Vukicevic M; Van Poucke S; Delibasic B Artif Intell Med; 2016 Sep; 72():12-21. PubMed ID: 27664505 [TBL] [Abstract][Full Text] [Related]
37. Multivariate modeling of complications with data driven variable selection: guarding against overfitting and effects of data set size. van der Schaaf A; Xu CJ; van Luijk P; Van't Veld AA; Langendijk JA; Schilstra C Radiother Oncol; 2012 Oct; 105(1):115-21. PubMed ID: 22264894 [TBL] [Abstract][Full Text] [Related]
38. A partitioning deletion/substitution/addition algorithm for creating survival risk groups. Lostritto K; Strawderman RL; Molinaro AM Biometrics; 2012 Dec; 68(4):1146-56. PubMed ID: 22519965 [TBL] [Abstract][Full Text] [Related]
39. Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology. Fox EW; Hill RA; Leibowitz SG; Olsen AR; Thornbrugh DJ; Weber MH Environ Monit Assess; 2017 Jul; 189(7):316. PubMed ID: 28589457 [TBL] [Abstract][Full Text] [Related]
40. Overoptimism in cross-validation when using partial least squares-discriminant analysis for omics data: a systematic study. Rodríguez-Pérez R; Fernández L; Marco S Anal Bioanal Chem; 2018 Sep; 410(23):5981-5992. PubMed ID: 29959482 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]