These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28114009)

  • 1. A New Variational Method for Bias Correction and Its Applications to Rodent Brain Extraction.
    Chang H; Huang W; Wu C; Huang S; Guan C; Sekar S; Bhakoo KK; Duan Y
    IEEE Trans Med Imaging; 2017 Mar; 36(3):721-733. PubMed ID: 28114009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust automatic rodent brain extraction using 3-D pulse-coupled neural networks (PCNN).
    Chou N; Wu J; Bai Bingren J; Qiu A; Chuang KH
    IEEE Trans Image Process; 2011 Sep; 20(9):2554-64. PubMed ID: 21411404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain extraction in partial volumes T2*@7T by using a quasi-anatomic segmentation with bias field correction.
    Valente J; Vieira PM; Couto C; Lima CS
    J Neurosci Methods; 2018 Feb; 295():129-138. PubMed ID: 29253575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The L0 Regularized Mumford-Shah Model for Bias Correction and Segmentation of Medical Images.
    Duan Y; Chang H; Huang W; Zhou J; Lu Z; Wu C
    IEEE Trans Image Process; 2015 Nov; 24(11):3927-38. PubMed ID: 26151940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An automatic rat brain extraction method based on a deformable surface model.
    Li J; Liu X; Zhuo J; Gullapalli RP; Zara JM
    J Neurosci Methods; 2013 Aug; 218(1):72-82. PubMed ID: 23684784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic cropping of MRI rat brain volumes using pulse coupled neural networks.
    Murugavel M; Sullivan JM
    Neuroimage; 2009 Apr; 45(3):845-54. PubMed ID: 19167504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new bias field correction method combining N3 and FCM for improved segmentation of breast density on MRI.
    Lin M; Chan S; Chen JH; Chang D; Nie K; Chen ST; Lin CJ; Shih TC; Nalcioglu O; Su MY
    Med Phys; 2011 Jan; 38(1):5-14. PubMed ID: 21361169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between intensity standardization and inhomogeneity correction in MR image processing.
    Madabhushi A; Udupa JK
    IEEE Trans Med Imaging; 2005 May; 24(5):561-76. PubMed ID: 15889544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infant Brain Extraction in T1-Weighted MR Images Using BET and Refinement Using LCDG and MGRF Models.
    Alansary A; Ismail M; Soliman A; Khalifa F; Nitzken M; Elnakib A; Mostapha M; Black A; Stinebruner K; Casanova MF; Zurada JM; El-Baz A
    IEEE J Biomed Health Inform; 2016 May; 20(3):925-935. PubMed ID: 25823048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method for bias field correction of brain T1-weighted magnetic resonance images minimizing segmentation error.
    Gispert JD; Reig S; Pascau J; Vaquero JJ; GarcĂ­a-Barreno P; Desco M
    Hum Brain Mapp; 2004 Jun; 22(2):133-44. PubMed ID: 15108301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing parameter choice for FSL-Brain Extraction Tool (BET) on 3D T1 images in multiple sclerosis.
    Popescu V; Battaglini M; Hoogstrate WS; Verfaillie SC; Sluimer IC; van Schijndel RA; van Dijk BW; Cover KS; Knol DL; Jenkinson M; Barkhof F; de Stefano N; Vrenken H;
    Neuroimage; 2012 Jul; 61(4):1484-94. PubMed ID: 22484407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retrospective correction of intensity inhomogeneity with sparsity constraints in transform-domain: Application to brain MRI.
    George MM; Kalaivani S
    Magn Reson Imaging; 2019 Sep; 61():207-223. PubMed ID: 31009687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A non-iterative multi-scale approach for intensity inhomogeneity correction in MRI.
    George MM; Kalaivani S; Sudhakar MS
    Magn Reson Imaging; 2017 Oct; 42():43-59. PubMed ID: 28549883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MRI intensity inhomogeneity correction by combining intensity and spatial information.
    Vovk U; Pernus F; Likar B
    Phys Med Biol; 2004 Sep; 49(17):4119-33. PubMed ID: 15470927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast multi-contrast MRI reconstruction.
    Huang J; Chen C; Axel L
    Magn Reson Imaging; 2014 Dec; 32(10):1344-52. PubMed ID: 25193110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fast automatic algorithm for correction of MR bias field.
    Milchenko MV; Pianykh OS; Tyler JM
    J Magn Reson Imaging; 2006 Oct; 24(4):891-900. PubMed ID: 16929550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI.
    Mehranian A; Arabi H; Zaidi H
    Neuroimage; 2016 Apr; 130():123-133. PubMed ID: 26853602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac MRI in mice at 9.4 Tesla with a transmit-receive surface coil and a cardiac-tailored intensity-correction algorithm.
    Sosnovik DE; Dai G; Nahrendorf M; Rosen BR; Seethamraju R
    J Magn Reson Imaging; 2007 Aug; 26(2):279-87. PubMed ID: 17654729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image-guided regularization level set evolution for MR image segmentation and bias field correction.
    Wang L; Pan C
    Magn Reson Imaging; 2014 Jan; 32(1):71-83. PubMed ID: 24239334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast nonlinear susceptibility inversion with variational regularization.
    Milovic C; Bilgic B; Zhao B; Acosta-Cabronero J; Tejos C
    Magn Reson Med; 2018 Aug; 80(2):814-821. PubMed ID: 29322560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.