These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 28114026)
1. A Real-Time Gait Event Detection for Lower Limb Prosthesis Control and Evaluation. Maqbool HF; Husman MAB; Awad MI; Abouhossein A; Iqbal N; Dehghani-Sanij AA IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1500-1509. PubMed ID: 28114026 [TBL] [Abstract][Full Text] [Related]
2. Delaying Ambulation Mode Transition Decisions Improves Accuracy of a Flexible Control System for Powered Knee-Ankle Prosthesis. Simon AM; Ingraham KA; Spanias JA; Young AJ; Finucane SB; Halsne EG; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1164-1171. PubMed ID: 28113980 [TBL] [Abstract][Full Text] [Related]
3. Real-time gait event detection for transfemoral amputees during ramp ascending and descending. Maqbool HF; Husman MA; Awad MI; Abouhossein A; Dehghani-Sanij AA Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4785-8. PubMed ID: 26737364 [TBL] [Abstract][Full Text] [Related]
4. Real-time gait event detection for lower limb amputees using a single wearable sensor. Maqbool HF; Husman MA; Awad MI; Abouhossein A; Mehryar P; Iqbal N; Dehghani-Sanij AA Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5067-5070. PubMed ID: 28269407 [TBL] [Abstract][Full Text] [Related]
5. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control. Huang S; Wensman JP; Ferris DP IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851 [TBL] [Abstract][Full Text] [Related]
6. Noncontact Capacitive Sensing-Based Locomotion Transition Recognition for Amputees With Robotic Transtibial Prostheses. Zheng E; Wang Q IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):161-170. PubMed ID: 26890910 [TBL] [Abstract][Full Text] [Related]
7. Providing time-discrete gait information by wearable feedback apparatus for lower-limb amputees: usability and functional validation. Crea S; Cipriani C; Donati M; Carrozza MC; Vitiello N IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):250-7. PubMed ID: 25373108 [TBL] [Abstract][Full Text] [Related]
8. A noncontact capacitive sensing system for recognizing locomotion modes of transtibial amputees. Zheng E; Wang L; Wei K; Wang Q IEEE Trans Biomed Eng; 2014 Dec; 61(12):2911-20. PubMed ID: 25014949 [TBL] [Abstract][Full Text] [Related]
9. Control of stair ascent and descent with a powered transfemoral prosthesis. Lawson BE; Varol HA; Huff A; Erdemir E; Goldfarb M IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):466-73. PubMed ID: 23096120 [TBL] [Abstract][Full Text] [Related]
10. Are wearable insoles a validated tool for quantifying transfemoral amputee gait asymmetry? Loiret I; Villa C; Dauriac B; Bonnet X; Martinet N; Paysant J; Pillet H Prosthet Orthot Int; 2019 Oct; 43(5):492-499. PubMed ID: 31364482 [TBL] [Abstract][Full Text] [Related]
11. Gait Analysis of Transfemoral Amputees: Errors in Inverse Dynamics Are Substantial and Depend on Prosthetic Design. Dumas R; Branemark R; Frossard L IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):679-685. PubMed ID: 28113632 [TBL] [Abstract][Full Text] [Related]
12. Development of an Environment-Aware Locomotion Mode Recognition System for Powered Lower Limb Prostheses. Liu M; Wang D; Helen Huang H IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):434-43. PubMed ID: 25879962 [TBL] [Abstract][Full Text] [Related]
13. Inertial Sensing for Gait Event Detection and Transfemoral Prosthesis Control Strategy. Ledoux ED IEEE Trans Biomed Eng; 2018 Dec; 65(12):2704-2712. PubMed ID: 29993444 [TBL] [Abstract][Full Text] [Related]
14. A running controller for a powered transfemoral prosthesis. Huff AM; Lawson BE; Goldfarb M Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4168-71. PubMed ID: 23366846 [TBL] [Abstract][Full Text] [Related]
15. Manipulation of visual biofeedback during gait with a time delayed adaptive Virtual Mirror Box. Barton GJ; De Asha AR; van Loon EC; Geijtenbeek T; Robinson MA J Neuroeng Rehabil; 2014 Jun; 11():101. PubMed ID: 24917329 [TBL] [Abstract][Full Text] [Related]
16. Portable haptic device for lower limb amputee gait feedback: Assessing static and dynamic perceptibility. Husman MAB; Maqbool HF; Awad MI; Dehghani-Sanij AA IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1562-1566. PubMed ID: 28814042 [TBL] [Abstract][Full Text] [Related]
17. Improving the gait performance of non-fluid-based swing-phase control mechanisms in transfemoral prostheses. Furse A; Cleghorn W; Andrysek J IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21592917 [TBL] [Abstract][Full Text] [Related]
18. Validity of DynaPort GaitMonitor for assessment of spatiotemporal parameters in amputee gait. Houdijk H; Appelman FM; Van Velzen JM; Van der Woude LH; Van Bennekom CA J Rehabil Res Dev; 2008; 45(9):1335-42. PubMed ID: 19319757 [TBL] [Abstract][Full Text] [Related]
19. Shock absorption during transtibial amputee gait: Does longitudinal prosthetic stiffness play a role? Boutwell E; Stine R; Gard S Prosthet Orthot Int; 2017 Apr; 41(2):178-185. PubMed ID: 27117010 [TBL] [Abstract][Full Text] [Related]