These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 28114026)
21. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees. Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984 [TBL] [Abstract][Full Text] [Related]
22. Improved Weight-Bearing Symmetry for Transfemoral Amputees During Standing Up and Sitting Down With a Powered Knee-Ankle Prosthesis. Simon AM; Fey NP; Ingraham KA; Finucane SB; Halsne EG; Hargrove LJ Arch Phys Med Rehabil; 2016 Jul; 97(7):1100-6. PubMed ID: 26686876 [TBL] [Abstract][Full Text] [Related]
23. Initial biomechanical evaluation of wearable tactile feedback system for gait rehabilitation in peripheral neuropathy. McKinney Z; Heberer K; Fowler E; Greenberg M; Nowroozi B; Grundfest W Stud Health Technol Inform; 2014; 196():271-7. PubMed ID: 24732521 [TBL] [Abstract][Full Text] [Related]
25. A comparative evaluation of oxygen consumption and gait pattern in amputees using Intelligent Prostheses and conventionally damped knee swing-phase control. Datta D; Heller B; Howitt J Clin Rehabil; 2005 Jun; 19(4):398-403. PubMed ID: 15929508 [TBL] [Abstract][Full Text] [Related]
26. Patient satisfaction following lower-limb amputation: the role of gait deviation. Kark L; Simmons A Prosthet Orthot Int; 2011 Jun; 35(2):225-33. PubMed ID: 21558305 [TBL] [Abstract][Full Text] [Related]
27. A robust design procedure for improvement of quality of lower-limb prosthesis. Chen NZ; Lee WC; Zhang M Biomed Mater Eng; 2006; 16(5):309-18. PubMed ID: 17075166 [TBL] [Abstract][Full Text] [Related]
28. Local dynamic stability of amputees wearing a torsion adapter compared to a rigid adapter during straight-line and turning gait. Segal AD; Orendurff MS; Czerniecki JM; Shofer JB; Klute GK J Biomech; 2010 Oct; 43(14):2798-803. PubMed ID: 20719315 [TBL] [Abstract][Full Text] [Related]
29. Influence of gait training and prosthetic foot category on external work symmetry during unilateral transtibial amputee gait. Agrawal V; Gailey R; O'Toole C; Gaunaurd I; Finnieston A Prosthet Orthot Int; 2013 Oct; 37(5):396-403. PubMed ID: 23364890 [TBL] [Abstract][Full Text] [Related]
30. Longitudinal kinematic and kinetic adaptations to obstacle crossing in recent lower limb amputees. Barnett CT; Polman RC; Vanicek N Prosthet Orthot Int; 2014 Dec; 38(6):437-46. PubMed ID: 24150931 [TBL] [Abstract][Full Text] [Related]
31. Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls. Selles RW; Formanoy MA; Bussmann JB; Janssens PJ; Stam HJ IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):81-8. PubMed ID: 15813409 [TBL] [Abstract][Full Text] [Related]
32. A comparative study of conventional and energy-storing prosthetic feet in high-functioning transfemoral amputees. Graham LE; Datta D; Heller B; Howitt J; Pros D Arch Phys Med Rehabil; 2007 Jun; 88(6):801-6. PubMed ID: 17532907 [TBL] [Abstract][Full Text] [Related]
33. Stair ascent with an innovative microprocessor-controlled exoprosthetic knee joint. Bellmann M; Schmalz T; Ludwigs E; Blumentritt S Biomed Tech (Berl); 2012 Dec; 57(6):435-44. PubMed ID: 23241569 [TBL] [Abstract][Full Text] [Related]
34. Gait analysis of low-cost flexible-shank transtibial prostheses. Lee WC; Zhang M; Chan PP; Boone DA IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):370-7. PubMed ID: 17009497 [TBL] [Abstract][Full Text] [Related]
35. Modelling the effect of prosthetic feet and shoes on the heel-ground contact force in amputee gait. Klute GK; Berge JS Proc Inst Mech Eng H; 2004; 218(3):173-82. PubMed ID: 15239568 [TBL] [Abstract][Full Text] [Related]
36. Biomechanical consideration based on the unrestrained gait measurement of trans-femoral amputee with a prosthetic limb. Hayashi Y; Tsujiuchi N; Koizumi T; Matsuda Y; Tsuchiya Y Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1612-5. PubMed ID: 22254631 [TBL] [Abstract][Full Text] [Related]
37. A non-invasive wearable sensory leg neuroprosthesis: mechanical, electrical and functional validation. Basla C; Chee L; Valle G; Raspopovic S J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34915454 [No Abstract] [Full Text] [Related]
38. Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations. Tura A; Raggi M; Rocchi L; Cutti AG; Chiari L J Neuroeng Rehabil; 2010 Jan; 7():4. PubMed ID: 20085653 [TBL] [Abstract][Full Text] [Related]
39. The capability of fiber Bragg grating sensors to measure amputees' trans-tibial stump/socket interface pressures. Al-Fakih EA; Osman NA; Eshraghi A; Adikan FR Sensors (Basel); 2013 Aug; 13(8):10348-57. PubMed ID: 23941909 [TBL] [Abstract][Full Text] [Related]
40. The role of the contralateral limb in below-knee amputee gait. Hurley GR; McKenney R; Robinson M; Zadravec M; Pierrynowski MR Prosthet Orthot Int; 1990 Apr; 14(1):33-42. PubMed ID: 2192355 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]