BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28114110)

  • 1. Effects of tissue mechanical and acoustic anisotropies on the performance of a cross-correlation-based ultrasound strain imaging method.
    Li H; Lee WN
    Phys Med Biol; 2017 Feb; 62(4):1456-1479. PubMed ID: 28114110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance evaluation of methods for two-dimensional displacement and strain estimation using ultrasound radio frequency data.
    Lopata RG; Nillesen MM; Hansen HH; Gerrits IH; Thijssen JM; de Korte CL
    Ultrasound Med Biol; 2009 May; 35(5):796-812. PubMed ID: 19282094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct and gradient-based average strain estimation by using weighted nearest neighbor cross-correlation peaks.
    Hussain MA; Abu Anas EM; Alam SK; Lee SY; Hasan MK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1713-28. PubMed ID: 22899118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic Performance Evaluation of a Cross-Correlation-Based Ultrasound Strain Imaging Method.
    Li H; Guo Y; Lee WN
    Ultrasound Med Biol; 2016 Oct; 42(10):2436-56. PubMed ID: 27423386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of two dimensional displacement and strain estimation techniques using a phased array transducer.
    Lopata RG; Nillesen MM; Hansen HH; Gerrits IH; Thijssen JM; de Korte CL
    Ultrasound Med Biol; 2009 Dec; 35(12):2031-41. PubMed ID: 19854565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining MR elastography and diffusion tensor imaging for the assessment of anisotropic mechanical properties: a phantom study.
    Qin EC; Sinkus R; Geng G; Cheng S; Green M; Rae CD; Bilston LE
    J Magn Reson Imaging; 2013 Jan; 37(1):217-26. PubMed ID: 22987805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A coupled subsample displacement estimation method for ultrasound-based strain elastography.
    Jiang J; Hall TJ
    Phys Med Biol; 2015 Nov; 60(21):8347-64. PubMed ID: 26458219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locally optimized correlation-guided Bayesian adaptive regularization for ultrasound strain imaging.
    Al Mukaddim R; Meshram NH; Varghese T
    Phys Med Biol; 2020 Mar; 65(6):065008. PubMed ID: 32028272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast vascular strain compounding using plane wave transmission.
    Hansen HH; Saris AE; Vaka NR; Nillesen MM; de Korte CL
    J Biomech; 2014 Mar; 47(4):815-23. PubMed ID: 24484646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of Human Skeletal Muscle Mechanical Anisotropy by Using Dual-Direction Shear Wave Imaging.
    Xu GX; Chen PY; Jiang X; Huang CC
    IEEE Trans Biomed Eng; 2022 Sep; 69(9):2745-2754. PubMed ID: 35192460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.
    Guo M; Abbott D; Lu M; Liu H
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):187-97. PubMed ID: 26768475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust strain-estimation algorithm using combined radiofrequency and envelope cross-correlation with diffusion filtering.
    Hussain MA; Alam SK; Lees SY; Hasan MK
    Ultrason Imaging; 2012 Apr; 34(2):93-109. PubMed ID: 22724315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2-D locally regularized tissue strain estimation from radio-frequency ultrasound images: theoretical developments and results on experimental data.
    Brusseau E; Kybic J; Deprez JF; Basset O
    IEEE Trans Med Imaging; 2008 Feb; 27(2):145-60. PubMed ID: 18334437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-step optical flow method for strain estimation in elastography: Simulation and phantom study.
    Pan X; Gao J; Tao S; Liu K; Bai J; Luo J
    Ultrasonics; 2014 Apr; 54(4):990-6. PubMed ID: 24393537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic composite material phantom to improve skeletal muscle characterization using magnetic resonance elastography.
    Guidetti M; Lorgna G; Hammersly M; Lewis P; Klatt D; Vena P; Shah R; Royston TJ
    J Mech Behav Biomed Mater; 2019 Jan; 89():199-208. PubMed ID: 30292169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of including myocardial anisotropy in simulated ultrasound images of the heart.
    Crosby J; Hergum T; Remme EW; Torp H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):326-33. PubMed ID: 19251519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Viscoelastic Response (VisR) Ultrasound for Characterizing Mechanical Anisotropy in Lower-Limb Skeletal Muscles of Boys with and without Duchenne Muscular Dystrophy.
    Moore CJ; Caughey MC; Meyer DO; Emmett R; Jacobs C; Chopra M; Howard JF; Gallippi CM
    Ultrasound Med Biol; 2018 Dec; 44(12):2519-2530. PubMed ID: 30174231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing the radial and circumferential strain distribution within vessel phantoms using synthetic-aperture ultrasound elastography.
    Korukonda S; Doyley MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1639-53. PubMed ID: 22899112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.
    Karwat P; Kujawska T; Lewin PA; Secomski W; Gambin B; Litniewski J
    Ultrasonics; 2016 Feb; 65():211-9. PubMed ID: 26498063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound backscatter tensor imaging (BTI): analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues.
    Papadacci C; Tanter M; Pernot M; Fink M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):986-96. PubMed ID: 24859662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.