BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 28114276)

  • 1. Enzyme-catalyzed cationic epoxide rearrangements in quinolone alkaloid biosynthesis.
    Zou Y; Garcia-Borràs M; Tang MC; Hirayama Y; Li DH; Li L; Watanabe K; Houk KN; Tang Y
    Nat Chem Biol; 2017 Mar; 13(3):325-332. PubMed ID: 28114276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tandem prenyltransferases catalyze isoprenoid elongation and complexity generation in biosynthesis of quinolone alkaloids.
    Zou Y; Zhan Z; Li D; Tang M; Cacho RA; Watanabe K; Tang Y
    J Am Chem Soc; 2015 Apr; 137(15):4980-3. PubMed ID: 25859931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-heme dioxygenase catalyzes atypical oxidations of 6,7-bicyclic systems to form the 6,6-quinolone core of viridicatin-type fungal alkaloids.
    Ishikawa N; Tanaka H; Koyama F; Noguchi H; Wang CC; Hotta K; Watanabe K
    Angew Chem Int Ed Engl; 2014 Nov; 53(47):12880-4. PubMed ID: 25251934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungal Dioxygenase AsqJ Is Promiscuous and Bimodal: Substrate-Directed Formation of Quinolones versus Quinazolinones.
    Einsiedler M; Jamieson CS; Maskeri MA; Houk KN; Gulder TAM
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8297-8302. PubMed ID: 33411393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic one-step ring contraction for quinolone biosynthesis.
    Kishimoto S; Hara K; Hashimoto H; Hirayama Y; Champagne PA; Houk KN; Tang Y; Watanabe K
    Nat Commun; 2018 Jul; 9(1):2826. PubMed ID: 30026518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the Dioxygenase AsqJ: Mechanistic Insights into a One-Pot Multistep Quinolone Antibiotic Biosynthesis.
    Bräuer A; Beck P; Hintermann L; Groll M
    Angew Chem Int Ed Engl; 2016 Jan; 55(1):422-6. PubMed ID: 26553478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic mechanism and molecular engineering of quinolone biosynthesis in dioxygenase AsqJ.
    Mader SL; Bräuer A; Groll M; Kaila VRI
    Nat Commun; 2018 Mar; 9(1):1168. PubMed ID: 29563492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function relationships of epoxide hydrolases and their potential use in biocatalysis.
    Widersten M; Gurell A; Lindberg D
    Biochim Biophys Acta; 2010 Mar; 1800(3):316-26. PubMed ID: 19948209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of aspoquinolones A-D, prenylated quinoline-2-one alkaloids from Aspergillus nidulans, motivated by genome mining.
    Scherlach K; Hertweck C
    Org Biomol Chem; 2006 Sep; 4(18):3517-20. PubMed ID: 17036148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the Desaturation of Cyclopeptin and its C3 Epimer Catalyzed by a non-Heme Iron Enzyme: Structural Characterization and Mechanism Elucidation.
    Liao HJ; Li J; Huang JL; Davidson M; Kurnikov I; Lin TS; Lee JL; Kurnikova M; Guo Y; Chan NL; Chang WC
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1831-1835. PubMed ID: 29314482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic epoxide-opening cascades catalyzed by a pair of epoxide hydrolases in the ionophore polyether biosynthesis.
    Minami A; Migita A; Inada D; Hotta K; Watanabe K; Oguri H; Oikawa H
    Org Lett; 2011 Apr; 13(7):1638-41. PubMed ID: 21375229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epoxide-hydrolase-initiated hydrolysis/rearrangement cascade of a methylene-interrupted bis-epoxide yields chiral THF moieties without involvement of a "cyclase".
    Ueberbacher BT; Oberdorfer G; Gruber K; Faber K
    Chembiochem; 2009 Jul; 10(10):1697-704. PubMed ID: 19496106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocatalytic asymmetric rearrangement of a methylene-interrupted bis-epoxide: simultaneous control of four asymmetric centers through a biomimetic reaction cascade.
    Glueck SM; Fabian WM; Faber K; Mayer SF
    Chemistry; 2004 Jul; 10(14):3467-78. PubMed ID: 15252793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereoselective construction of quaternary carbon stereocenters via a semipinacol rearrangement strategy.
    Wang B; Tu YQ
    Acc Chem Res; 2011 Nov; 44(11):1207-22. PubMed ID: 21728380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of phytuberin. 4-endo-tet acid-catalyzed cyclization of alpha-hydroxy epoxides.
    Prangé T; Rodríguez MS; Suárez E
    J Org Chem; 2003 May; 68(11):4422-31. PubMed ID: 12762747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Immolation of a Bacterial Dehydratase Enzyme by its Epoxide Product.
    Lence E; Maneiro M; Sanz-Gaitero M; van Raaij MJ; Thompson P; Hawkins AR; González-Bello C
    Chemistry; 2020 Jun; 26(36):8035-8044. PubMed ID: 32259333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Heme Iron Enzymes Catalyze Heterobicyclic and Spirocyclic Isoquinolone Core Formation in Piperazine Alkaloid Biosynthesis.
    Pham MT; Yang FL; Liu IC; Liang PH; Lin HC
    Angew Chem Int Ed Engl; 2024 May; 63(20):e202401324. PubMed ID: 38499463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic Investigation of a Non-Heme Iron Enzyme Catalyzed Epoxidation in (-)-4'-Methoxycyclopenin Biosynthesis.
    Chang WC; Li J; Lee JL; Cronican AA; Guo Y
    J Am Chem Soc; 2016 Aug; 138(33):10390-3. PubMed ID: 27442345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does nature click? Theoretical prediction of an enzyme-catalyzed transannular 1,3-dipolar cycloaddition in the biosynthesis of lycojaponicumins A and B.
    Krenske EH; Patel A; Houk KN
    J Am Chem Soc; 2013 Nov; 135(46):17638-42. PubMed ID: 24195703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epoxide-initiated cationic cyclization of azides: a novel method for the stereoselective construction of 5-hydroxymethyl azabicyclic compounds and application in the stereo- and enantioselective total synthesis of (+)- and (-)-indolizidine 167B and 209D.
    Reddy PG; Baskaran S
    J Org Chem; 2004 Apr; 69(9):3093-101. PubMed ID: 15104448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.