BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28114730)

  • 1. Three-body expansion of the fragment molecular orbital method combined with density-functional tight-binding.
    Nishimoto Y; Fedorov DG
    J Comput Chem; 2017 Mar; 38(7):406-418. PubMed ID: 28114730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model.
    Nishimoto Y; Fedorov DG
    Phys Chem Chem Phys; 2016 Aug; 18(32):22047-61. PubMed ID: 27215663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Scale Quantum-Mechanical Molecular Dynamics Simulations Using Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method.
    Nishimoto Y; Nakata H; Fedorov DG; Irle S
    J Phys Chem Lett; 2015 Dec; 6(24):5034-9. PubMed ID: 26623658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytic second derivative of the energy for density-functional tight-binding combined with the fragment molecular orbital method.
    Nakata H; Nishimoto Y; Fedorov DG
    J Chem Phys; 2016 Jul; 145(4):044113. PubMed ID: 27475354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding.
    Vuong VQ; Nishimoto Y; Fedorov DG; Sumpter BG; Niehaus TA; Irle S
    J Chem Theory Comput; 2019 May; 15(5):3008-3020. PubMed ID: 30998360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding.
    Nishimoto Y; Fedorov DG
    J Chem Phys; 2018 Feb; 148(6):064115. PubMed ID: 29448787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method.
    Nishimoto Y; Fedorov DG; Irle S
    J Chem Theory Comput; 2014 Nov; 10(11):4801-12. PubMed ID: 26584367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method.
    Nakata H; Fedorov DG; Zahariev F; Schmidt MW; Kitaura K; Gordon MS; Nakamura S
    J Chem Phys; 2015 Mar; 142(12):124101. PubMed ID: 25833559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragment Molecular Orbital Molecular Dynamics with the Fully Analytic Energy Gradient.
    Brorsen KR; Minezawa N; Xu F; Windus TL; Gordon MS
    J Chem Theory Comput; 2012 Dec; 8(12):5008-12. PubMed ID: 26593192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pair Interaction Energy Decomposition Analysis for Density Functional Theory and Density-Functional Tight-Binding with an Evaluation of Energy Fluctuations in Molecular Dynamics.
    Fedorov DG; Kitaura K
    J Phys Chem A; 2018 Feb; 122(6):1781-1795. PubMed ID: 29337557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fragment molecular orbital method combined with density-functional tight-binding and periodic boundary conditions.
    Nishimoto Y; Fedorov DG
    J Chem Phys; 2021 Mar; 154(11):111102. PubMed ID: 33752370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation.
    Nishizawa H; Nishimura Y; Kobayashi M; Irle S; Nakai H
    J Comput Chem; 2016 Aug; 37(21):1983-92. PubMed ID: 27317328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and accurate assessment of GPCR-ligand interactions Using the fragment molecular orbital-based density-functional tight-binding method.
    Morao I; Fedorov DG; Robinson R; Southey M; Townsend-Nicholson A; Bodkin MJ; Heifetz A
    J Comput Chem; 2017 Sep; 38(23):1987-1990. PubMed ID: 28675443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Li H; Kitaura K
    J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Spectroscopy of Large Systems in Solution: The DFTB/PCM and TD-DFTB/PCM Approach.
    Barone V; Carnimeo I; Scalmani G
    J Chem Theory Comput; 2013 Apr; 9(4):2052-71. PubMed ID: 26583552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metadynamics combined with auxiliary density functional and density functional tight-binding methods: alanine dipeptide as a case study.
    Cuny J; Korchagina K; Menakbi C; Mineva T
    J Mol Model; 2017 Mar; 23(3):72. PubMed ID: 28204939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density functional tight binding-based free energy simulations in the DFTB+ program.
    Mitchell I; Aradi B; Page AJ
    J Comput Chem; 2018 Nov; 39(29):2452-2458. PubMed ID: 30238475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO).
    Fedorov DG; Kitaura K; Li H; Jensen JH; Gordon MS
    J Comput Chem; 2006 Jun; 27(8):976-85. PubMed ID: 16604514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A density functional tight binding model with an extended basis set and three-body repulsion for hydrogen under extreme thermodynamic conditions.
    Srinivasan SG; Goldman N; Tamblyn I; Hamel S; Gaus M
    J Phys Chem A; 2014 Jul; 118(29):5520-8. PubMed ID: 24960065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.