BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28114730)

  • 21. Importance of Three-Body Interactions in Molecular Dynamics Simulations of Water Demonstrated with the Fragment Molecular Orbital Method.
    Pruitt SR; Nakata H; Nagata T; Mayes M; Alexeev Y; Fletcher G; Fedorov DG; Kitaura K; Gordon MS
    J Chem Theory Comput; 2016 Apr; 12(4):1423-35. PubMed ID: 26913837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dcdftbmd: Divide-and-Conquer Density Functional Tight-Binding Program for Huge-System Quantum Mechanical Molecular Dynamics Simulations.
    Nishimura Y; Nakai H
    J Comput Chem; 2019 Jun; 40(15):1538-1549. PubMed ID: 30828839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accurate Scoring in Seconds with the Fragment Molecular Orbital and Density-Functional Tight-Binding Methods.
    Morao I; Heifetz A; Fedorov DG
    Methods Mol Biol; 2020; 2114():143-148. PubMed ID: 32016891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid QM/MM approach for biomolecular systems under periodic boundary conditions: Combination of the density-functional tight-binding theory and particle mesh Ewald method.
    Nishizawa H; Okumura H
    J Comput Chem; 2016 Dec; 37(31):2701-2711. PubMed ID: 27718264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DFTB/PCM Applied to Ground and Excited State Potential Energy Surfaces.
    Nishimoto Y
    J Phys Chem A; 2016 Feb; 120(5):771-84. PubMed ID: 26761635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analytic Gradient for Time-Dependent Density Functional Theory Combined with the Fragment Molecular Orbital Method.
    Nakata H; Fedorov DG
    J Chem Theory Comput; 2023 Feb; 19(4):1276-1285. PubMed ID: 36753486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient Geometry Optimization of Large Molecular Systems in Solution Using the Fragment Molecular Orbital Method.
    Nakata H; Fedorov DG
    J Phys Chem A; 2016 Dec; 120(49):9794-9804. PubMed ID: 27973804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical Optimization of Density Functional Tight Binding Models: Application to Molecules Containing Carbon, Hydrogen, Nitrogen, and Oxygen.
    Krishnapriyan A; Yang P; Niklasson AMN; Cawkwell MJ
    J Chem Theory Comput; 2017 Dec; 13(12):6191-6200. PubMed ID: 29039935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polarizable continuum model with the fragment molecular orbital-based time-dependent density functional theory.
    Chiba M; Fedorov DG; Kitaura K
    J Comput Chem; 2008 Dec; 29(16):2667-76. PubMed ID: 18484637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation.
    Li H; Fedorov DG; Nagata T; Kitaura K; Jensen JH; Gordon MS
    J Comput Chem; 2010 Mar; 31(4):778-90. PubMed ID: 19569184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bulk and Surface Properties of Rutile TiO2 from Self-Consistent-Charge Density Functional Tight Binding.
    Fox H; Newman KE; Schneider WF; Corcelli SA
    J Chem Theory Comput; 2010 Feb; 6(2):499-507. PubMed ID: 26617305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implementation of the analytic energy gradient for the combined time-dependent density functional theory/effective fragment potential method: application to excited-state molecular dynamics simulations.
    Minezawa N; De Silva N; Zahariev F; Gordon MS
    J Chem Phys; 2011 Feb; 134(5):054111. PubMed ID: 21303096
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analytic second derivatives of the energy in the fragment molecular orbital method.
    Nakata H; Nagata T; Fedorov DG; Yokojima S; Kitaura K; Nakamura S
    J Chem Phys; 2013 Apr; 138(16):164103. PubMed ID: 23635107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulations of infrared and Raman spectra in solution using the fragment molecular orbital method.
    Nakata H; Fedorov DG
    Phys Chem Chem Phys; 2019 Jul; 21(25):13641-13652. PubMed ID: 31188364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Description of non-covalent interactions in SCC-DFTB methods.
    Miriyala VM; Řezáč J
    J Comput Chem; 2017 Apr; 38(10):688-697. PubMed ID: 28093777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum effects in cation interactions with first and second coordination shell ligands in metalloproteins.
    Ngo V; da Silva MC; Kubillus M; Li H; Roux B; Elstner M; Cui Q; Salahub DR; Noskov SY
    J Chem Theory Comput; 2015 Oct; 11(10):4992-5001. PubMed ID: 26574284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effective fragment molecular orbital method: a merger of the effective fragment potential and fragment molecular orbital methods.
    Steinmann C; Fedorov DG; Jensen JH
    J Phys Chem A; 2010 Aug; 114(33):8705-12. PubMed ID: 20446697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Density-functional tight-binding: basic concepts and applications to molecules and clusters.
    Spiegelman F; Tarrat N; Cuny J; Dontot L; Posenitskiy E; Martí C; Simon A; Rapacioli M
    Adv Phys X; 2020; 5(1):1710252. PubMed ID: 33154977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural Characterization of Sulfur-Containing Water Clusters Using a Density-Functional Based Tight-Binding Approach.
    Korchagina KA; Simon A; Rapacioli M; Spiegelman F; Cuny J
    J Phys Chem A; 2016 Nov; 120(45):9089-9100. PubMed ID: 27809528
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large-Scale Molecular Dynamics Simulation for Ground and Excited States Based on Divide-and-Conquer Long-Range Corrected Density-Functional Tight-Binding Method.
    Komoto N; Yoshikawa T; Nishimura Y; Nakai H
    J Chem Theory Comput; 2020 Apr; 16(4):2369-2378. PubMed ID: 32074445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.