These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 28114755)

  • 1. Comparative Proteomic and Nutritional Composition Analysis of Independent Transgenic Pigeon Pea Seeds Harboring cry1AcF and cry2Aa Genes and Their Nontransgenic Counterparts.
    Mishra P; Singh S; Rathinam M; Nandiganti M; Ram Kumar N; Thangaraj A; Thimmegowda V; Krishnan V; Mishra V; Jain N; Rai V; Pattanayak D; Sreevathsa R
    J Agric Food Chem; 2017 Feb; 65(7):1395-1400. PubMed ID: 28114755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative nutritional compositions and proteomics analysis of transgenic Xa21 rice seeds compared to conventional rice.
    Gayen D; Paul S; Sarkar SN; Datta SK; Datta K
    Food Chem; 2016 Jul; 203():301-307. PubMed ID: 26948618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Pigeonpea (Cajanus cajan L.) transgenics expressing Bt ICPs, Cry2Aa and Cry1AcF under nethouse containment implicated an effective control against herbivory by Helicoverpa armigera (Hübner).
    Ramkumar N; Rathinam M; Singh S; Kesiraju K; Muniyandi V; Singh NK; Dash PK; Sreevathsa R
    Pest Manag Sci; 2020 May; 76(5):1902-1911. PubMed ID: 31840900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic Analysis of Pigeonpea (Cajanus cajan) Seeds Reveals the Accumulation of Numerous Stress-Related Proteins.
    Krishnan HB; Natarajan SS; Oehrle NW; Garrett WM; Darwish O
    J Agric Food Chem; 2017 Jun; 65(23):4572-4581. PubMed ID: 28532149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nondestructive determination of transgenic Bacillus thuringiensis rice seeds (Oryza sativa L.) using multispectral imaging and chemometric methods.
    Liu C; Liu W; Lu X; Chen W; Yang J; Zheng L
    Food Chem; 2014 Jun; 153():87-93. PubMed ID: 24491704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition of grain and forage from corn rootworm-protected corn event MON 863 is equivalent to that of conventional corn (Zea mays l.).
    George C; Ridley WP; Obert JC; Nemeth MA; Breeze ML; Astwood JD
    J Agric Food Chem; 2004 Jun; 52(13):4149-58. PubMed ID: 15212462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of marker-free transgenic pigeon pea (Cajanus cajan) expressing a pod borer insecticidal protein.
    Sarkar S; Roy S; Ghosh SK
    Sci Rep; 2021 May; 11(1):10543. PubMed ID: 34007007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR metabolic profiling of transgenic maize with the Cry1Ab gene.
    Piccioni F; Capitani D; Zolla L; Mannina L
    J Agric Food Chem; 2009 Jul; 57(14):6041-9. PubMed ID: 19545151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A metabonomic study of transgenic maize (Zea mays) seeds revealed variations in osmolytes and branched amino acids.
    Manetti C; Bianchetti C; Casciani L; Castro C; Di Cocco ME; Miccheli A; Motto M; Conti F
    J Exp Bot; 2006; 57(11):2613-25. PubMed ID: 16831843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic profiling of transgenic rice with cryIAc and sck genes: an evaluation of unintended effects at metabolic level by using GC-FID and GC-MS.
    Zhou J; Ma C; Xu H; Yuan K; Lu X; Zhu Z; Wu Y; Xu G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Mar; 877(8-9):725-32. PubMed ID: 19233746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of the seeds of transgenic rice lines and the corresponding nongenetically modified isogenic variety.
    Liu W; Chen H; Li L; Dong M; Zhang Z; Wan Y; Jin W
    J Sci Food Agric; 2021 Mar; 101(5):1869-1878. PubMed ID: 32898281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomics as a complementary tool for identifying unintended side effects occurring in transgenic maize seeds as a result of genetic modifications.
    Zolla L; Rinalducci S; Antonioli P; Righetti PG
    J Proteome Res; 2008 May; 7(5):1850-61. PubMed ID: 18393457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compositional equivalency of Cry1F corn event TC6275 and conventional corn (Zea mays L.).
    Herman RA; Phillips AM; Collins RA; Tagliani LA; Claussen FA; Graham CD; Bickers BL; Harris TA; Prochaska LM
    J Agric Food Chem; 2004 May; 52(9):2726-34. PubMed ID: 15113183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unintended compositional changes in transgenic rice seeds ( Oryza sativa L.) studied by spectral and chromatographic analysis coupled with chemometrics methods.
    Jiao Z; Si XX; Li GK; Zhang ZM; Xu XP
    J Agric Food Chem; 2010 Feb; 58(3):1746-54. PubMed ID: 20050687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compositional assessment of event DAS-59122-7 maize using substantial equivalence.
    Herman RA; Storer NP; Phillips AM; Prochaska LM; Windels P
    Regul Toxicol Pharmacol; 2007 Feb; 47(1):37-47. PubMed ID: 17027131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive in silico allergenicity assessment of novel protein engineered chimeric Cry proteins for safe deployment in crops.
    Rathinam M; Singh S; Pattanayak D; Sreevathsa R
    BMC Biotechnol; 2017 Aug; 17(1):64. PubMed ID: 28768539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenic rice plants expressing cry1Ia5 gene are resistant to stem borer (Chilo agamemnon).
    Moghaieb RE
    GM Crops; 2010; 1(5):288-93. PubMed ID: 21844686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marker-free, tissue-specific expression of Cry1Ab as a safe transgenic strategy for insect resistance in rice plants.
    Qi Y; Chen L; He X; Jin Q; Zhang X; He Z
    Pest Manag Sci; 2013 Jan; 69(1):135-41. PubMed ID: 22927237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutritional assessment of transgenic lysine-rich maize compared with conventional quality protein maize.
    Tang M; He X; Luo Y; Ma L; Tang X; Huang K
    J Sci Food Agric; 2013 Mar; 93(5):1049-54. PubMed ID: 23400871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tobacco plants expressing the Cry1AbMod toxin suppress tolerance to Cry1Ab toxin of Manduca sexta cadherin-silenced larvae.
    Porta H; Jiménez G; Cordoba E; León P; Soberón M; Bravo A
    Insect Biochem Mol Biol; 2011 Jul; 41(7):513-9. PubMed ID: 21621616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.