These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28114759)

  • 1. Rational Design of Hyperbranched Nanowire Systems for Tunable Superomniphobic Surfaces Enabled by Atomic Layer Deposition.
    Bielinski AR; Boban M; He Y; Kazyak E; Lee DH; Wang C; Tuteja A; Dasgupta NP
    ACS Nano; 2017 Jan; 11(1):478-489. PubMed ID: 28114759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superomniphobic and easily repairable coatings on copper substrates based on simple immersion or spray processes.
    Rangel TC; Michels AF; Horowitz F; Weibel DE
    Langmuir; 2015 Mar; 31(11):3465-72. PubMed ID: 25714008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superomniphobic surfaces for effective chemical shielding.
    Pan S; Kota AK; Mabry JM; Tuteja A
    J Am Chem Soc; 2013 Jan; 135(2):578-81. PubMed ID: 23265660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".
    Zhao H; Park KC; Law KY
    Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-and nanostructured silicon-based superomniphobic surfaces.
    Nguyen TP; Boukherroub R; Thomy V; Coffinier Y
    J Colloid Interface Sci; 2014 Feb; 416():280-8. PubMed ID: 24370432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically durable, superomniphobic coatings prepared by layer-by-layer technique for self-cleaning and anti-smudge.
    Brown PS; Bhushan B
    J Colloid Interface Sci; 2015 Oct; 456():210-8. PubMed ID: 26133277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sliding droplets on superomniphobic zinc oxide nanostructures.
    Perry G; Coffinier Y; Thomy V; Boukherroub R
    Langmuir; 2012 Jan; 28(1):389-95. PubMed ID: 22053956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Nanostructured Omniphobic and Superomniphobic Surfaces with Inexpensive CO
    Pendurthi A; Movafaghi S; Wang W; Shadman S; Yalin AP; Kota AK
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):25656-25661. PubMed ID: 28731320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonfluorinated Superomniphobic Surfaces through Shape-Tunable Mushroom-like Polymeric Micropillar Arrays.
    Kim H; Han H; Lee S; Woo J; Seo J; Lee T
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5484-5491. PubMed ID: 30576594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative testing of robustness on superomniphobic surfaces by drop impact.
    Nguyen TP; Brunet P; Coffinier Y; Boukherroub R
    Langmuir; 2010 Dec; 26(23):18369-73. PubMed ID: 21028759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization.
    Sorvali M; Vuori L; Pudas M; Haapanen J; Mahlberg R; Ronkainen H; Honkanen M; Valden M; Mäkelä JM
    Nanotechnology; 2018 May; 29(18):185708. PubMed ID: 29451126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultralyophobic oxidized aluminum surfaces exhibiting negligible contact angle hysteresis.
    Hozumi A; McCarthy TJ
    Langmuir; 2010 Feb; 26(4):2567-73. PubMed ID: 20030348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering sticky superomniphobic surfaces on transparent and flexible PDMS substrate.
    Dufour R; Harnois M; Coffinier Y; Thomy V; Boukherroub R; Senez V
    Langmuir; 2010 Nov; 26(22):17242-7. PubMed ID: 20954730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Healable Superomniphobic Surfaces for Corrosion Protection.
    Ezazi M; Shrestha B; Klein N; Lee DH; Seo S; Kwon G
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30240-30246. PubMed ID: 31339304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobic/superhydrophobic oxidized metal surfaces showing negligible contact angle hysteresis.
    Hozumi A; Cheng DF; Yagihashi M
    J Colloid Interface Sci; 2011 Jan; 353(2):582-7. PubMed ID: 20970808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces.
    Choi W; Tuteja A; Mabry JM; Cohen RE; McKinley GH
    J Colloid Interface Sci; 2009 Nov; 339(1):208-16. PubMed ID: 19683717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superomniphobic Surfaces with Improved Mechanical Durability: Synergy of Hierarchical Texture and Mechanical Interlocking.
    Wang W; Vahabi H; Movafaghi S; Kota AK
    Adv Mater Interfaces; 2019 Sep; 6(18):. PubMed ID: 33042731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free-Standing, Flexible, Superomniphobic Films.
    Vahabi H; Wang W; Movafaghi S; Kota AK
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):21962-7. PubMed ID: 27541853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transparent, flexible, superomniphobic surfaces with ultra-low contact angle hysteresis.
    Golovin K; Lee DH; Mabry JM; Tuteja A
    Angew Chem Int Ed Engl; 2013 Dec; 52(49):13007-11. PubMed ID: 24227787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying Differences and Similarities in Static and Dynamic Contact Angles between Nanoscale and Microscale Textured Surfaces Using Molecular Dynamics Simulations.
    Slovin MR; Shirts MR
    Langmuir; 2015 Jul; 31(29):7980-90. PubMed ID: 26110823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.