These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 28114904)

  • 21. Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering.
    Guo X; Meng Y; Yu N; Pan Y
    BMC Bioinformatics; 2014 Apr; 15():102. PubMed ID: 24717145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. KDSNP: A kernel-based approach to detecting high-order SNP interactions.
    Kodama K; Saigo H
    J Bioinform Comput Biol; 2016 Oct; 14(5):1644003. PubMed ID: 27806683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leveraging input and output structures for joint mapping of epistatic and marginal eQTLs.
    Lee S; Xing EP
    Bioinformatics; 2012 Jun; 28(12):i137-46. PubMed ID: 22689753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. IndOR: a new statistical procedure to test for SNP-SNP epistasis in genome-wide association studies.
    Emily M
    Stat Med; 2012 Sep; 31(21):2359-73. PubMed ID: 22711278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detecting epistasis in human complex traits.
    Wei WH; Hemani G; Haley CS
    Nat Rev Genet; 2014 Nov; 15(11):722-33. PubMed ID: 25200660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research on single nucleotide polymorphisms interaction detection from network perspective.
    Su L; Liu G; Wang H; Tian Y; Zhou Z; Han L; Yan L
    PLoS One; 2015; 10(3):e0119146. PubMed ID: 25763929
    [TBL] [Abstract][Full Text] [Related]  

  • 27. COE: a general approach for efficient genome-wide two-locus epistasis test in disease association study.
    Zhang X; Pan F; Xie Y; Zou F; Wang W
    J Comput Biol; 2010 Mar; 17(3):401-15. PubMed ID: 20377453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure.
    Leem S; Jeong HH; Lee J; Wee K; Sohn KA
    Comput Biol Chem; 2014 Jun; 50():19-28. PubMed ID: 24581733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interpretable network-guided epistasis detection.
    Duroux D; Climente-González H; Azencott CA; Van Steen K
    Gigascience; 2022 Feb; 11():. PubMed ID: 35134928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A general model for multilocus epistatic interactions in case-control studies.
    Wang Z; Liu T; Lin Z; Hegarty J; Koltun WA; Wu R
    PLoS One; 2010 Aug; 5(8):e11384. PubMed ID: 20814428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PHENOME-WIDE INTERACTION STUDY (PheWIS) IN AIDS CLINICAL TRIALS GROUP DATA (ACTG).
    Verma SS; Frase AT; Verma A; Pendergrass SA; Mahony S; Haas DW; Ritchie MD
    Pac Symp Biocomput; 2016; 21():57-68. PubMed ID: 26776173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A computationally fast measure of epistasis for 2 SNPs and a categorical phenotype.
    Antoniades A; Matthews PM; Pattichis CS; Galwey NW
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6194-7. PubMed ID: 21097157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional regression method for whole genome eQTL epistasis analysis with sequencing data.
    Xu K; Jin L; Xiong M
    BMC Genomics; 2017 May; 18(1):385. PubMed ID: 28521784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A hybrid framework for genome wide epistasis discovery.
    Tan Z; Zhang Z; Liu J; Kwoh CK; Ong SH; Teo YY; Khor CC; Tai ES; Aung T; Vithana E; Wong TY
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6479-82. PubMed ID: 22255822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An information-gain approach to detecting three-way epistatic interactions in genetic association studies.
    Hu T; Chen Y; Kiralis JW; Collins RL; Wejse C; Sirugo G; Williams SM; Moore JH
    J Am Med Inform Assoc; 2013; 20(4):630-6. PubMed ID: 23396514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The complete compositional epistasis detection in genome-wide association studies.
    Wan X; Yang C; Yang Q; Zhao H; Yu W
    BMC Genet; 2013 Feb; 14():7. PubMed ID: 23421496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A deep hybrid model to detect multi-locus interacting SNPs in the presence of noise.
    Uppu S; Krishna A
    Int J Med Inform; 2018 Nov; 119():134-151. PubMed ID: 30342681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cuckoo search epistasis: a new method for exploring significant genetic interactions.
    Aflakparast M; Salimi H; Gerami A; Dubé MP; Visweswaran S; Masoudi-Nejad A
    Heredity (Edinb); 2014 Jun; 112(6):666-74. PubMed ID: 24549111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bayesian epistasis association mapping via SNP imputation.
    Zhang Y
    Biostatistics; 2011 Apr; 12(2):211-22. PubMed ID: 20923970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detecting epistatic effects in association studies at a genomic level based on an ensemble approach.
    Li J; Horstman B; Chen Y
    Bioinformatics; 2011 Jul; 27(13):i222-9. PubMed ID: 21685074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.